Browse > Article

Effect of Electron Donor on the Reductive Dechlorination of PCE in Groundwater Using Biobarrier: Batch Experiment  

HwangBo, Hyun-Wook (Department of Chemical Engineering, Kyungpook National University)
Shin, Won-Sik (Department of Environmental Engineering, Kyungpook National University)
Kim, Young-Hun (Department of Environmental Engineering, Andong National University)
Song, Dong-Ik (Department of Chemical Engineering, Kyungpook National University)
Publication Information
Journal of Soil and Groundwater Environment / v.11, no.2, 2006 , pp. 22-37 More about this Journal
Abstract
The applicability of biobarrier or in situ microbial filter technology for the remediation of groundwater contaminated with chlorinated solvent was investigated through batch microcosm study. The efficiency and rates of reductive dechlorination of tetrachloroethylene (PCE) are known to be highly dependent on hydrogen concentration. In this study, the effect of electron donors on the reductive dechlorination of PCE was investigated using vermicompost (or worm casting) and peat as a biobarrier medium. The effect of organic acids (lactate, butyrate and benzoate), yeast extract and vitamin $B_{12}$ on the reductive dechlorination was investigated. In the absence of biobarrier medium (adsorbent), addition of electron donors stimulated the dechlorination rate of PCE compared to the control experiment (i.e., no electron donor added). Among the treatments, addition of lactate or lactate/benzoate as hydrogen donor exhibited the highest dechlorination rate ($k_1=0.0260{\sim}0.0266\;day^{-1}$). In case of using vermicompost as a biobarrier medium, amendment of lactate/benzoate exhibited the highest dechlorination rate following with a pseudo-first-order degradation rate constant of $k_1=0.0849\;day^{-1}$. In contrast, when Pahokee peat was used as a biobarrier medium, either butyrate or lactate addition exhibited the highest dechlorination rate with $k_1$ values of 0.1092 and $0.1067\;day^{-1}$, respectively. The results of this study showed the potential applicability of in situ biobarrier technology using vermicompost or peat as a barrier material for the remediation of groundwater contaminated with chlorinated solvent.
Keywords
Biobarrier; Reductive dechlorination; Electron donor; Organic acid; Peat; Vermicompost;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carr, C.S. and Hughes, J.B., 1998, Enrichment of high-rate PCE dechlorination and comparative study of lactate, methanol, and hydrogen as electron donors to sustain activity, Environ. Sci. Technol., 32, 1817-1824   DOI   ScienceOn
2 Fennell, D.E. and Gossett, S.H., 1997, Comparison of butyric acid, ethnol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene, Environ. Sci. Technol., 31(3), 918-926   DOI   ScienceOn
3 Ho, Y. and McKay, G., 2000, The kinetics of sorption of divalent metal ions onto sphagnum peat moss, Water Res., 34(3), 735-742   DOI   ScienceOn
4 Kao, C.M., Chen, S.C., and Liu, J.K., 2001, Development of biobarrier for the remediation of PCE-contaminated aquifer, Chemosphere, 43, 1071-1078   DOI   ScienceOn
5 Kassenga, G.R., Pardue, J.H., Moe, W.M., and Bowman, K.S., 2004, Hydrogen thresholds as indicators of dehalorespiration in constructed treatment wetlands, Environ Sci. Technol. 38, 1024- 1030   DOI   ScienceOn
6 Li, J. and Werth, C.J., 2001, Evaluating competitive sorption mechanim of volatile organic compounds in soils and sediments using polymers and zeolites, Environ. Sci. Technol., 35, 569-574
7 Lorah, M.M., Olsen, L.D., Capone, D.G., and Baker, J.E., 2001, Biodegradation of trichloroethylene and its anaerobic daughter products in freshwater wetland sediments, Bioremediation J., 5, 101-118   DOI   ScienceOn
8 Nzengung, V.A., Nkedi-Kizza, P., Jessup, R.E., and Voudrias, E.A., 1997, Organic cosolvent effects on sorption kinetics of hydrophobic organic chemicals by organoclays, Environ. Sci. Technol., 31, 1470-1475   DOI   ScienceOn
9 Shawabkeh, R.A. and Tutunji, M.F., 2003, Experimental study and modeling of basic dye sorption by diatomaceous clay, Appl. Clay Sci., 24(1-2), 111-120   DOI   ScienceOn
10 Smatlak, C.R., Gossett, J.M., and Zinder, S.H., 1997, Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethylene, Environ. Sci. Technol., 31, 918-926   DOI   ScienceOn
11 Stuer-Lauridsen, F. and Pederson, F., 1997, On the influence of the polarity index of organic matter in predicting environmental sorption of chemicals, Chemosphere, 35(4), 761-773   DOI   ScienceOn
12 Yang, Y. and McCarty, P.L., 1998, Competition for hydrogen within a chlorinated solvent dehalogenating anaerobic mixed culture, Environ. Sci. Technol., 32, 3591-3597   DOI   ScienceOn
13 Zou, S., Stensel, H.D., and Ferguson, J.F., 2000, Carbon tetrachloride degradation: effect of microbial growth substrate and vitamin $B_{12}$ content, Environ. Sci. Technol., 34, 1751-1757   DOI   ScienceOn
14 Brusseau, M.L. and Rao, P.S.C., 1991, Influence of sorbate structure on nonequilibrium sorption of organic compounds, Environ Sci Technol., 25, 1501-1506   DOI
15 Isalou, M., Sleep, B.E., and Liss, S.N., 1998, Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system, Environ. Sci. Technol., 32(22), 3579-3585   DOI   ScienceOn
16 Cornellison, G., Hassell, K.A., van Noorst, P.C.M., Kraaij, R., van Erkeren, P.J., Dijkema, C., de Jager, P.A., and Govers, H.A.J., 1997a, Slow desorption of PCBs and chlorobenzenes from soils and sediments: Relations with sorbent and sorbate characteristics, Environ. Pollut., 108, 69-80
17 Kassenga, G.R., Pardue, J.H., Blair, S., and Ferraro, T., 2003, Treatment of chlorinated volatile organic compounds in upflow wetland mesocosms, Ecol. Eng., 19, 305-353   DOI   ScienceOn
18 Xing, B., McGill, W.B., and Dudas, M.J., 1994, Cross correlation of polarity curves to predict partition coefficients of nonionic contaminants, Environ. Sci. Technol., 28, 1929-1933   DOI   ScienceOn
19 Lorah, M.M. and Olsen, L.D., 1999, Degradation of 1,1,2,2-tetrachloroethane in a freshwater tidal wetland: field and laboratory evidence, Environ. Sci. Technol., 33, 227-234   DOI   ScienceOn
20 Wood, S., Trobaugh, D.J., and Carter, K.J., 1999, Polychlorinated biphenyl reductive dechlorination by vitamin $B_{12}s$: Thermodynamics and regiospecificity, Environ. Sci. Technol., 33, 857-863   DOI   ScienceOn
21 Yerushalmi, L., Manuel, M.F., and Guiot, S.R., 1999, Biodegradation of gasoline and BTEX in a microaerophilic biobarrier, Biodegradation, 10, 341-352   DOI   ScienceOn
22 Ballapragada, B.S., Stensel, H.D., Puhakka, J.A., and Ferguson, J.F., 1997, Effect of hydrogen on reductive dechlorination of chlorinated ethenes, Environ. Sci. Technol., 31(6), 1728-1734   DOI   ScienceOn
23 Binger, C.A., Martin, J.P., Allen-King, R.M., Fowler, M., 1999, Variability of chlorinated-solvent sorption associated with oxidative weathering of kerogen J. Contam. Hydrol., 40, 137-158   DOI   ScienceOn
24 Burris, D.R., Delcomyn, C.A., Smith, M.H., and Roberts, A.L., 1996, Reductive dechlorination of tetrachloroethene and trichloroethylene catalyzed by vitamin $B_{12}$ in homogenous and heterogenous systems, Environ. Sci. Technol., 30(10), 3047-3052   DOI   ScienceOn
25 House, J.S., 2002, Enhanced bioremediation of 1,1,2,2-tetrachloroethane in wetland soils, M.S. Thesis, Louisiana State University, Baton Rouge, LA, USA
26 Lorah, M.M. and Voytek, M.A., 2004, Degradation of 1,1,2,2- tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater, J. Contam. Hydrol., 70, 117-145   DOI   ScienceOn
27 Guerin, W.F. and Boyd, S.A., 1992, Differential bioavailability of soil-sorbed naphthalene to two bacterial species, Appl. Environ. Microbiol., 58, 1142-1152
28 Opdyke, D.R. and Loehr, R.C., 1999, Determination of chemical release rates from soil: Experimental design, Environ. Sci. Technol., 33, 1193-1199   DOI   ScienceOn
29 Schollhorn, A., Savary, C., Stucki, G., and Hanselmann, K.W., 1997, Comparison of different substrates for the fast reductive dechlorination of trichloroethene under groundwater conditions, Water. Res., 31, 1275-1282   DOI   ScienceOn
30 Smatlak, C.R., Gossett, J.M., and Zinder, S.H., 1996, Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture, Environ. Sci. Technol., 30, 2850-2858   DOI   ScienceOn
31 Schaefer, C.E. Schuth, C., Werth, C.J., and Reinhard, M., 2000, Binary desorption isotherm of TCE and PCE from silica gel and natural solids, Environ. Sci. Technol., 34, 4341-4347   DOI   ScienceOn
32 Grathwohl, P., 1990, Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on $K_{OC}$ correlations, Environ. Sci. Technol., 24(11), 1687-1693   DOI
33 Kao, C.M. and Lei, S.E., 2000, Using a peat biobarrier to remediate PCE/TCE contaminated aquifers, Water. Res., 34(3), 835- 845   DOI   ScienceOn
34 Cornellison, G., Rigterink, H., Vrind, B.A., ten Hulscher, D.Th.E.M., Ferdinary, M.M.A., and van Noorst, P.C.M., 1997b, Two-stage desorption kinetics and in situ partitioning of hexachlorobenzene and dichlorobenzenes in a contaminant sediment, Chemosphere, 35(10), 2405-2416   DOI   ScienceOn
35 Li, J. and Werth, C.J., 2004, Slow desorption mechanism of volatile organic chemical mixtures in soil and sediment micropores, Environ. Sci. Technol., 38, 440-448   DOI   ScienceOn
36 Kim, Y-H. and Carraway, E.R., 2003, Dechlorination of chlorinated ethenes and acetylenes by palladized iron, Environ. Technol., 24, 809-819   DOI
37 Hungate, R.E., 1969, A roll tube method for cultivation of strict anaerobes, In: Methods in Microbiology, Vol. 3b, Norris, J.R. and Robbins, D.W.(ed.), Academic Press, New York
38 Brusseau, M.L., 1991, Cooperative sorption of organic chemicals in systems composed of organic carbon aquifer materials, Environ Sci Technol., 25, 1747-1752   DOI
39 Pardue, J.H., Kassenga, G.R., and Shin, W.S., 2000, Design approaches for chlorinated VOC treatment wetlands, In: Means, J.L. and Hinchee, R.E. (eds.). Wetlands and Remediation, An International Conference, Battelle Press, p. 301-308
40 Lendvay, J.M., Loffler, F.E., Dollhopf, M., Aiello, M.R., Daniels, G., Fathepure, B.Z., Gebhard, M., Heine, R., Helton, R., Shi, J., Krajmalnik-Brown, R., Major, C.L., Barcelona, M.J., Petrovskis, E., Hickey, R., Tiedje, J.M., and Adriaens, P., 2003, Bioreactive barriers: A comparison of bioaugmentation and biostimulation for chlorinated solvent remediation, Environ. Sci. Technol., 37, 1422-1431   DOI   ScienceOn
41 Taylor, R.T., Hanna, M.L., Shah, N.N., Shonnard, D.R., Duba, A.G., Durham, W.B., Jackson, K.J., Knapp, R.B., Wijesinghe, A.M., Knezovich, J.P., and Jovanovich, M.C., 1993, In situ bioremediation of trichloroethylene-contaminated water by a resting-cell methanotropic microbial filter, Hydrological Sci. J., 38, 323-342   DOI   ScienceOn
42 Warith, M.L., Fernandes, L., and Gaudet, N., 1999, Design of in-situ microbial filter for the remdediation of naphthalene, Waste Manage., 19, 9-25   DOI   ScienceOn