• Title/Summary/Keyword: Organic Vapor

Search Result 762, Processing Time 0.03 seconds

Crystallographic Relationships of (Ba, Sr) $TiO_3$Thin Film Prepared by Metal-Organic Chemical Vapor Deposition on (111) Textured Pt Electrode

  • Yoo, Dong-Chul;Lee, Jeong-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.11
    • /
    • pp.1126-1129
    • /
    • 2000
  • The crystallographic orientations of $Ba_{0.6}$S $r_{0.4}$Ti $O_3$(BST) thin film deposited by a metal-organic chemical vapor deposition on (111) textured Pt electrode were studied with a transmission electron microscopy. The fully crystallized BST thin film (50nm) has (100) and (110) preferred orientations. A high resolution transmission electron microscopy study has revealed the crystallographic orientation relationships between BST thin film and Pt electrode. These relationships explained the preferred orientation of BST film on (111) textured Pt electrode. With these results, we could represent the atomic arrangement at the BST/Pt interface.e.e.

  • PDF

Metal-Organic Vapor Phase Epitaxy : A Review II. Process and charactristics (MOVPE 단결정층 성장법 II. MOVPE공정 및 특징)

  • 정원국
    • Journal of Surface Science and Engineering
    • /
    • v.23 no.2
    • /
    • pp.1-10
    • /
    • 1990
  • Metal-Organic Vapor Phase Epitaxy (MOVPE) is an epitaxial process utilizaing ane or more of organometallice as reactnte to grow compound semicond semiconductror layers. MOVPE is basically a cold wall process in which reactants are delivered without reacting with each other to the heated substrate where reactants are thermally decomposed to from compound semiconductors through chemical reaction. Since reactants are delivered as gas phase and the formation of the single crystal compunds depends on the thermal decomposition of the reactants, details of MOVPE relies on the hydrodynamics and pyroltsis and chemical reation of reactants inside on reaction chamber. It has been demonstrated that MOVPE is capable of growing virtually all of the III-V, II-VI and IV-VI compound semiconductrs, fabricating ultrathin epilayers, for ming abrupt hetrointerfaces with monolayer transition width, and is suitable for multi-wafer operation yilding a high throghtput. Overiew of reactror componts and layer, characteristics, and status of MOVPE are discussed.

  • PDF

Structural study of indium oxide thin films by metal organic chemical vapor deposition (저온화학기상증착에 의한 인듐산화막 구조에 관한 연구)

  • Pammi, S.Venkat.N.;Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.47-47
    • /
    • 2007
  • Indium oxide conducting films were dep9sited on Si(100) substrates at various temperatures by liquid delivery metal organic chemical vapor deposition using Indium (III) tris (2,2,6,6-tetramethyl-3.5-heptanedionato) $(dpm)_3$ precursors. The films deposited at $200{\sim}400^{\circ}C$ were grown with a (111) preferred orientation and exhibit an increase of grain size from 21 to 33nm with increasing deposition temperature. In the range of deposition temperature, there is no metallic indium phase in deposited films.

  • PDF

Study on the Stability of Organic Thin-Film Transistors Fabricated by Inserting a Polymeric Film as an Adhesion Layer

  • Hyung, Gun-Woo;Park, Il-Houng;Seo, Ji-Hoon;Seo, Ji-Hyun;Choi, Hak-Bum;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1348-1351
    • /
    • 2007
  • We demonstrated that the threshold voltage shift owing to a gate-bias stress is originated from the trapped charges at the interface between semiconductor layer and dielectric layer, and such drawback can be settled by applying long-term delay time to the gate electrode.

  • PDF

Characterization of Chemical Vapor Condensation Reactor for Parylene-N Thin Film Deposition

  • Lee, Jong-Seung;Yeo, Seok-Ki;Park, Chin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.897-900
    • /
    • 2003
  • Chemical vapor condensation (CVC) reactor was investigated for the deposition of Parylene-N thin films as the passivation layer for organic light emitting diodes (OLEDs). Several gas inlet manifold designs were tested to improve the deposition rate and its uniformity, and it was found that proper inlet design is crucial to get the desired film properties. Process characterization was also performed with the modified inlets to optimize the process variables.

  • PDF