• Title/Summary/Keyword: Organic Soil

Search Result 3,686, Processing Time 0.038 seconds

Effect of Rice Bran and Barley Bran Application on Growth and Yield of Chinese Chive (Allium tuberosum Rottler) and Taro (Colocasia esculenta) and Weed Control (쌀겨, 보릿겨 처리가 부추와 토란의 생육과 수량 및 잡초방제에 미치는 영향)

  • Ryu, Deok-Kyo;Yun, Young-Beom;Kwon, Oh-Do;Shin, Dong-Young;Hyun, Kyu-Hwan;Lee, Do-Jin;Kuk, Yong-In
    • Korean Journal of Weed Science
    • /
    • v.31 no.3
    • /
    • pp.260-270
    • /
    • 2011
  • This study was carried out to examine the effect of rice bran, barley bran, burned rice bran, and burned barley bran on the growth and yield of Chinese chive (Allium tuberosum Rottler), taro (Colocasia esculenta), and weed control. When the above 4 brans were examined 13, 27, 41 and 57 days respectively after application, the plant height of Chinese chive applied with burned barley bran was significantly higher than non-treated control, whereas the other brans did not have any distinct effect on the plant height or population number of Chinese chive. However, when examined 57 days after the application of the above 4 brans, all the plants applied with brans showed more than twice the improvement in shoot fresh weight compared with non-treated control. A chemical analysis of soil 57 days after the application of the above 4 brans showed that the soils were richer in available phosphate and organic matter. Shoot fresh weight of Chinese chive at 2 weeks after cutting was significantly higher in barely bran treated plot than in non-treated plot. In the case of taro, only taro plots transplanted when 10 cm tall and applied with barley bran showed an improvement in growth increment of both the underground and above parts. However, when sowed seeds after the application of the 4 brans, the yield of taro was reduced by the brans. Thus this research indicates that the effect of brans is differ based on the amount of bran application as well as crops. The effect of weed control on Echinochloa crus-galli, Digitaria clliaris, Chenopodium album, and Solanum nigrum as affected by brans was very low in pot conditions. Weed efficacy of the brans was also very low in field conditions. Growth of Chinese cabbage and garland chrysanthemum was inhibited 63% and 37% by rice bran at $4,000kg\;ha^{-1}$, respectively, but other crops such as maize, squash, cucumber, and Chinese chive were inhibited by 0-20%. These results were similar to that of barley bran except for Chinese cabbage.

Assessment of Hydrochemistry and Irrigation Water Quality of Wicheon Watershed in the Gyeongsangbuk-do (경상북도 위천수계의 수리화학적 특성 및 관개용수 수질평가)

  • Lee, Gi-Chang;Park, Moung-Sub;Kim, Jae-Sik;Jang, Tae-Kwon;Kim, Hyo-Sun;Lee, Hwa-Sung;Son, Jin-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.36-43
    • /
    • 2020
  • BACKGROUND: Wicheon watershed has the largest irrigation area among the mid-watershed of Nakdong river. However, no investigation of irrigation water quality has been conducted on the Wicheon watershed, which evaluates the effects on the soil quality and crop cultivation. Therefore, this study aims to provide various assessments of water quality of Wicheon watershed as the scientific basic data for efficient agricultural activities. METHODS AND RESULTS: Water sampling was performed in five locations of the first tributaries of Wicheon. Wicheon watershed showed clean water quality with very low organic matters and safe water quality from metals at all points of investigation. It was estimated that the natural chemical components of Wicheon watershed were originated from water-rock interaction in Gibbs diagram. All samples were concentrated in the type of Ca-HCO3-Cl in the Piper diagram. The quality of irrigation water was evaluated with sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), and percent sodium (%Na). The values of these water quality indices were in the range of 0.37-0.67, -2.11--0.24, 41.13-84.52% and 11.28-21.84%, respectively, and were classified as good grades at all sites. CONCLUSION: The water quality of Wicheon watershed was very low in salt, indicating good irrigation water suitable for growing agricultural products. We hope that the results of this study will be used as the basic data for the cultivation of agricultural products and promotion of their excellence.

Hydrochemical and Isotopic Characteristics of Major Streams in the Daejeon Area (대전지역 도심하천의 수리화학적 및 동위원소적 특성)

  • Jeong, Chan-Ho;Moon, Byung-Jin
    • Economic and Environmental Geology
    • /
    • v.42 no.4
    • /
    • pp.315-333
    • /
    • 2009
  • In this study, the hydrochemical and the isotopic characteristics of major streams in the Daejeon area were investigated during rainy and dry seasons. The stream water shows the electrical conductivity of the range of $37{\sim}527{\mu}s$/cm, and pH $6.21{\sim}9.83$. The chemical composition of stream waters can be grouped as three types: the upper streams of Ca(Mg)-$HCO_3$ type, Ca(Mg)-$SO_4(Cl)$ type of middle streams flowing through urban area, and Na(Ca)-$HCO_3$(Cl, $SO_4$) type of the down streams. Based on in-situ investigation, the high pH of stream waters flowing through urban area is likely to be caused by the inflow of a synthetic detergent discharging from the apartment complex. The electrical conductivity of stream waters at a dry season is higher than those of at a rainy season. We suggest that the hydro-chemical composition of stream waters in the Daejeon area was affected by the discharging water from the sewage treatment facilities and anthropogenic contaminants as well as the interaction with soil and rocks. ${\delta}D$ and ${\delta}^{18}O$ values of the stream waters show the relationship of ${\delta}D=6.45{\delta}^{18}O-7.4$, which is plotted at a lower area than global meteoric water line(GMWL) of Craig(1961). It is likely that this isotopic range results from the evaporation effect of stram waters and the change of an air mass. The isotope value shows an increasing trend from upper stream to lower stream, that reflects the isotopic altitude effect. The relationship between ${\delta}^{13}C$ and $EpCO_2$ indicates that the carbon as bicarbonate in stream water is mainly originated from $CO_2$ in the air and organic materials. The increasing trend of ${\delta}^{13}C$ value from upper stream waters to lower stream waters can be attributed to the following reasons: (1) an increasing dissolution of $CO_2$ gas from a contaminated air in downtown area of the Daejeon, and (2) the increment of an inorganic carbon of groundwater inflowed into stream by base flow. Based on the relationship between ${\delta}^{34}S$ and $SO_4$ of stream waters, the stream waters can be divided into four groups. $SO_4$ content increases as a following order: upper and middle Gab stream${\delta}^{34}S$ value decreases as above order. ${\delta}^{34}S$ value indicates that sulfur of stream waters is mainly originated from atmosphere, and is additionally supplied by pyrite source according to the increase of sulfate content. The sulfur isotope analysis of a synthetic detergent and sewage water as a potential source of the sulfur in stream waters is furtherly needed.

Studies on Cropping System for Year-Round Cultivation of Forage Crops in Gyeongnam Province (경남지방에서 조사료 주년생산 작부체계에 관한 연구)

  • Kang, Dal-Soon;Kim, Dae-Ho;Shin, Hyun-Yul;Son, Gil-Man;Rho, Chi-Woong;Kim, Jung-Gon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.2
    • /
    • pp.137-152
    • /
    • 2009
  • Present experiment was conducted at the field of Gyeongnam Agricultural Research and Extension Services in Jinju city for two continuous cropping seasons to develop several adaptable and valuable year-round forage-producing system for elevating self-sufficiency and dollar-saving by reduced importing of crude forage. Twenty cropping systems were tested in experiment using whole crop barley (WCB), oat, rye, Italian ryegrass (IRG), and triticale in winter season and com, sorghum, sorghum ${\times}$ sudangrass hybrid, and oat in summer time. Sorghum ${\times}$ sudangrass hybrid showed highest fresh forage yield among experimented summer season crops, and followed com. Com produced the most dry matter yield, and followed sorghum${\times}$sudangrass hybrid, sorghum and oat in order. There was no significant effect of former winter crops on fresh and dry matter production succeeding summer time crops. Among winter season forage crops tested, oat showed the highest fresh and dry matter when clipped on mid-May, and followed triticale, IRG, rye and WCB. Winter-time cultivated crops showed no clear effect on the growth and forage (fresh and dry matter) producing ability of following summer crops. There was the most protein content in oat plant among summer season planted crops, and in sorghum for acid detergent fiber (ADF) and in sorghum ${\times}$ sudangrass hybrid for neutral detergent fiber (NDF), respectively. While, com showed highest value of relative feed value (RFV) and total digestive nutrients (TDN) among those crops. Among winter crops, the highest crude protein was in oat plant showing no significant differences of ADF and NDF, while, relatively higher value of RFV was recognized with rye and triticale. Also, triticale contained more TDN as compare to other forage crops. The cropping combinations such as com followed by (fb) rye and maize fb triticale were regarded as promising systems having higher dry matter producing ability among tested combinations. Considering TDN producing potential, the combinations with sorghum ${\times}$ sudangrass hybrid fb triticale andlor rye were would be suitable ones, coincidently. There was a tendency which elevating pH, electric conductivity (EC) and organic matter (OM) contents in soil after experiment comparing to before planting. More crude protein content in plant was shown at mid-May clipping as compared to the forage at April cut in all winter season grown crops. ADF and NDF contents were increased by delayed clipping showing decreased tendency of RFV and TDN in plant. In conclusion, many cropping systems would be available using above mentioned forage crops according to farmer's conditions and scale, etc.

Heavy Metal Speciation in Compost Derived from the Different Animal Manures (이축분종(異畜糞種) 퇴비에서의 중금속 화학종분화(化學種分化))

  • Ko, H.J.;Choi, H.L.;Kim, K.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.273-282
    • /
    • 2004
  • Composting animal manure is one of feasible treatments that reserves some portion of nutrients of manure. Although the application of compost to arable land has many advantages, the repeated cultivation of the agriculture land will accumulate the level of heavy metals in the soil which is potentially hamful to people and animals. Therefore it is important to know the characteristics concentration and species of heavy metals in a variety of chemical fonns than just total content of the metal. Because the metals in different forms have different mobilities and bioavailabilites. The aim of this study was to examine the total content and the chemical forms of the heavy metals; Cr, Ni, Cu, Zn, As, Cd and Pb in the animal manure composted with sawdust or rice hull as a bulking agent. A total of 75 compost samples were collected throughout the country and classified into the three groups in accordance with the characteristics of raw materials: swine manure, poultry manure, and mixed(swine + poultry + cattle)manure. The compost samples were analyzed for total metal content and fractionated by sequential chemical extractions to estimate the quantities of metals: exchangeable, adsorbed, organically bound, carbonate and residual. The results showed that the heavy metal concentrations in all compost samples were lower than the maximum acceptable limits by the Korea Compost Quality Standards. The concentrations of heavy metals in the swine manure compost were higher than those of both the poultry and the mixed manure compost except for Cr. Zn and Cu concentrations of three different compost ranged from 157 to 839 mg Zn/kg DM(dry matter) and from 47 to 458 mg Cu/kg DM, depending on the composition of animal manures. The predominant forms for extracted metals were Cr, Ni, Zn, As and Ph, residual; Cu, organic; and Cd, carbonate. The results suggested that the legal standards for composts should be reexamined to revise the criteria on the total metal content as well as metal speciation.

Characterization of Streptomyces netropsis Showing a Nematicidal Activity against Meloidogyne incognita (Meloidogyne incognita에 살선충활성을 보이는 신규 Streptomyces netropsis의 살선충 특성 규명)

  • Jang, Ja Yeong;Choi, Yong Ho;Joo, Yoon-Jung;Kim, Hun;Choi, Gyung Ja;Jang, Kyoung Soo;Kim, Chang-Jin;Cha, Byeongjin;Park, Hae Woong;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.21 no.2
    • /
    • pp.50-57
    • /
    • 2015
  • Control of nematode has become difficult owing to the restricted use of effective soil fumigant, methyl bromide, and other non-fumigant nematicides. Therefore, it is urgently necessary to develop microbial nematicide to replace chemical nematicides. In this study, the 50% aqueous methanol extraction solution of fermentation broths of 2,700 actinomycete strains were tested for their nematicidal activity against second stage of juveniles (J2s) of Meloidogyne incognita. As the results, only the 50% aqueous methanol extraction solution of AN110065, at 20% equivalent to 10% fermentation broth, showed strong nematicidal activity with 78.9% of mortality 24 h after treatment and 94.1% of mortality at 72 h. The 16S rRNA gene sequencing showed that the strain sequence was 99.78% identical to Streptomyces netropsis. The extract of S. netropsis AN110065 fermentation broth was successively partitioned with ethyl acetate and butanol and then the ethyl acetate, butanol and water layers were investigated for their nematicidal activity against the M. incognita. At $1000{\mu}g/ml$, ethyl acetate layer showed the strongest activity of 83.5% of juvenile mortality 72 h after treatment. The pot experiment using the fermentation broth of AN110065 on tomato plant against M. incognita displayed that it evidently suppressed gall formation at a 10-fold diluent treatment. The tomato plants treated with the fermentation broth of S. netropsis AN110065 did not show any phytotoxicity. The results suggest that S. netropsis AN110065 has a potential to serve as microbial nematicide in organic agriculture.

Studies on the Composition of Forest Vegetation and the Contents of Polluted Materials in the Needles in an Air Polluted Area (대기오염지역(大氣汚染地域)의 삼림식생구조(森林植生構造)와 엽내오염물질(葉內汚染物質) 함량(含量)에 관한 연구(硏究))

  • Kim, Jong Kab;Kim, Jai Saing
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.4
    • /
    • pp.360-371
    • /
    • 1989
  • This study was performed to investigate effects of air pollution on the Pinus thunbergii forests in Onsan industrial districts, and environmental factors, contents of soluble sulfur in needles, and composition of sorest vegetation were examined. The results obtained in this study were summarized as follows ; 1. The pH of soils, organic matter and total N were low near the source of air pollutants, and sulfur contents in the soils was high in general. Especially there was significant correlation between the sulfur contents in the soil and pH at 1% level. 2. The contents of soluble sulfur in needles ranged from 0.13% to 0.25% and were generally high, and plot 2 and 3 were the highest of all. 3. In the number of species, 7 species appeared in plot 3 and 20 species in plot 7, and they were low near the source of air pollutants. Total number of individuls, species diversity and evenness increased with in creasing distance from the source of air pollutants. 4. There were significant correlations between the contents of soluble sulfur in needles and the number of species and species diversity at 5%, 1% level, respectively. 5. Importance value of each species was low near the source of air pollutants but Quercus species showed high values in all plots. 6. On these studied plots, Pinus thunbergii, Quercus serrata and smilax china were tolerant, and Rhododendron mucronulatum, Rhododendron yedoense var. poukhanense, Platycarya strobilacea and Lespedeza maritima were sensitive to air pollution.

  • PDF

Specific Absorption Coefficients for the Chlorophyll and Suspended Sediment in the Yellow and Mediterranean Sea (황해와 지중해에서의 클로로필 및 부유입자의 비흡광계수 연구)

  • 안유환;문정언
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.353-365
    • /
    • 1998
  • Light absorption coefficient per unit mass of particles, i.e., specific absorption coefficient, is important as one of the main parameters in developing algorithms for ocean color remote sensing. Specific absorption coefficient of chlorophyll ($a^*_{ph}$) and suspended sediment ($a^*_{ss}$) were analyzed with a spectrophotometer using the "wet filter technique" and "Kishino method" for the seawater collected in the Yellow and Mediterranean Sea. An improved data-recovery method for the filter technique was also developed using spectrum slopes. This method recovered the baselines of spectrum that were often altered in the original methods. High $a^*_{ph}({lambda})$ values in the oligotrophic Mediterranean Sea and low values in the Yellow Sea were observed, ranging 0.01 to 0.12 $m^2$/mg at the chlorophyll maximum absorption wavelength of 440 nm. The empirical relationship between $a^*_{ph}$(440nm) and chlorophyll concentrations () was found to fit a power function ($a^*_{ph}$=0.039 $^{-0.369}$), which was similar to Bricaud et al. (1995). Absorption specific coefficients for suspended sediment ($a^*_{ss}$) did not show any relationship with concentrations of suspended sediment. However, an average value of $a^*_{ss}$ ranging 0.005 - 0.08 $m^2$/g at 440nm, was comparable to the specific absorption coefficient of soil (loess) measured by Ahn (1990). The morepronounced variability of $a^*_{ss}$ than $a^*_{ph}$ was determined from the variable mixing ratio values between particulate organic matter and mineral. It can also be explained by a wide size-distribution range for SS which were determined by their specific gravity, bottom state, depth and agitation of water mass by wind in the sea surface.

Effects of streambed geomorphology on nitrous oxide flux are influenced by carbon availability (하상 미지형에 따른 N2O 발생량 변화 효과에 대한 탄소 가용성의 영향)

  • Ko, Jongmin;Kim, Youngsun;Ji, Un;Kang, Hojeong
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.11
    • /
    • pp.917-929
    • /
    • 2019
  • Denitrification in streams is of great importance because it is essential for amelioration of water quality and accurate estimation of $N_2O$ budgets. Denitrification is a major biological source or sink of $N_2O$, an important greenhouse gas, which is a multi-step respiratory process that converts nitrate ($NO_3{^-}$) to gaseous forms of nitrogen ($N_2$ or $N_2O$). In aquatic ecosystems, the complex interactions of water flooding condition, substrate supply, hydrodynamic and biogeochemical properties modulate the extent of multi-step reactions required for $N_2O$ flux. Although water flow in streambed and residence time affect reaction output, effects of a complex interaction of hydrodynamic, geomorphology and biogeochemical controls on the magnitude of denitrification in streams are still illusive. In this work, we built a two-dimensional water flow channel and measured $N_2O$ flux from channel sediment with different bed geomorphology by using static closed chambers. Two independent experiments were conducted with identical flume and geomorphology but sediment with differences in dissolved organic carbon (DOC). The experiment flume was a circulation channel through which the effluent flows back, and the size of it was $37m{\times}1.2m{\times}1m$. Five days before the experiment began, urea fertilizer (46% N) was added to sediment with the rate of $0.5kg\;N/m^2$. A sand dune (1 m length and 0.15 m height) was made at the middle of channel to simulate variations in microtopography. In high- DOC experiment, $N_2O$ flux increases in the direction of flow, while the highest flux ($14.6{\pm}8.40{\mu}g\;N_2O-N/m^2\;hr$) was measured in the slope on the back side of the sand dune. followed by decreases afterward. In contrast, low DOC sediment did not show the geomorphological variations. We found that even though topographic variation influenced $N_2O$ flux and chemical properties, this effect is highly constrained by carbon availability.

Classifications by Materials and Physical Characteristics for Neolithic Pottery from Jungsandong Site in Yeongjong Island, Korea (영종도 중산동 신석기시대 토기의 재료학적 분류와 물리적 특성)

  • Kim, Ran Hee;Lee, Chan Hee;Shin, Sook Chung
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.122-147
    • /
    • 2017
  • The Jungsandong sites are distributed across quartz and mica schist formations in Precambrian, and weathering layers include large amounts of non-plastic minerals such as mica, quartz, felspar, amphibole, chlorite and so on, which form the ground of the site. Neolithic pottery from Jungsandong exhibits various brown colors, and black core is developed along the inner part for some samples, and sharp comb-pattern and hand pressure marks can be observed. Their non-plastic particles have various composition, size distribution, sorting and roundness, so they are classified into four types by their characteristic mineral compositions. I-type (feldspar pottery) is including feldspar as the pain component or mica and quartz. II-type (mica pottery) is the combination of chloritized mica, talc, tremolite and diopside. III-type (talc pottery) is with a very small amount of quartz and mica. IV-type (asbestos pottery) is containing tremolite and a very small amount of talc. The inner and outer colors of Jungsandong pottery are somewhat heterogeneous. I-type pottery group shows differences in red and yellow degree, depending on the content of feldspar, and is similar to III-type pottery. II-type is similar to IV-type, because its red degree is somewhat high. The soil of the site is higher in red and yellow degree than pottery from it. The magnetic susceptibility has very wide range of 0.088 to 7.360(${\times}10^{-3}$ SI unit), but is differentiated according to minerals, main components in each type. The ranges of bulk density and absorption ratio of pottery seem to be 1.6 to 1.7 and 13.1 to 26.0%, respectively. Each type of pottery shows distinct section difference, as porosity and absorption ratio increase in the order as follows: I-type (organic matter fixed sample) < III-type and IV-type < I-type < II-type (including IV-type of IJP-15). The reason is that differences in physical property occur according to kind and size of non-plastic particles. Although Jungsandong pottery consists of mixtures of various materials, the site pottery has a geological condition on which all mineral composition of Jungsandong pottery can be provided. There, it is thought that raw materials can be supplied from weathered zone of quartz and mica schist, around the site. However, different constituent minerals, size and rock fragments are shown, suggesting the possibility that there can be more raw material pits. Thus, it is estimated that there may be difference in clay and weathering degree.