• Title/Summary/Keyword: Organic PCM

Search Result 17, Processing Time 0.029 seconds

PCM/Nylon6 복합사 염착특성

  • Lee, Jun-Hee;Kim, Hyung-Joo;Yim, Sang-Hyun;Im, Jung-Nam;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.11a
    • /
    • pp.35-35
    • /
    • 2011
  • Phase change material(PCM) has thermal energy storage and been attracted attention. Latent heat of the organic PCM can keep maintaining temperature when the change of outside energy conditions influence to PCM. Thus, many researchers have interested to thermal energy storage ability and investigated to applications such as thermal storage of solar energy, bioclimatic building, icebank, medical application, clothing industry and so on. Among the many applications, investigation of the PCM in clothing industry is also important because the people has interest functional factor called health-care in the clothing. In addition, PCM can give them mild environment condition such suitable temperature control or humidity. To fabrics, the PCM has various methods such as microcapsule, padding and modified cross-section formation(Sheath/core). Sheath core PCM fabric has a better benefit of durability than other method. However, PCM sheath/core spinning is difficult. In addition, dyeing property is important to use clothing industry due to visual images. In this study, we investigated dyeing properties of Nylon/PCM sheath/core fabrics. Especially, we observed the relation between dyeing property and PCM including ratio. Various temperature and pH conditions were also studied to optimize dyeing properties as acid dye.

  • PDF

Coloration approaches on sheath/core type nylon fibers having PCM particles

  • Kim, Hyung-Joo;Park, June-Min;Lee, A-Reum;Yim, Sang-Hyun;Im, Jung-Nam;Son, Young-A
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.70-70
    • /
    • 2012
  • Thermo-regulated textiles have been attracted more attention in medical textile application areas. Phase change materials, namely PCM, are substance with a high hear of fusion and can absorb a lot of energy before melting, which make the temperature remain constant during the phase changes. Herein, using nylon fibers having different PCM content were dyed and characterized to determine the coloration properties with PCM content ratio. The corresponding findings were discussed.

  • PDF

Preparation, Physical Characteristics and Antibacterial Finishing of PCM/Nylon Fibers having Sheath/Core Structure (상전이물질(PCM)과 Nylon 6를 이용한 Sheath/Core 형태의 복합섬유 제조, 물리적 특성 및 항균가공특성 연구)

  • Kim, Hak-Soo;Hwang, Ji-Yong;Lim, Sang-Hyun;Lim, Jeong-Nam;Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.26 no.4
    • /
    • pp.311-321
    • /
    • 2014
  • In this study, Aftertreatment properties of PCM/Nylon sheath/core fabrics have been determined. Especially, the relationship between finishing property and content including of PCM ratio. Samples of PCM/Nylon fabrics were monitored, separately, with 2% o.w.f solutions of each of the berberine chloride, cetylpyridinium chloride(CPC), benzyldimethylhexadecyl ammonium chloride(BDHAC) and dodecyltrimetyl ammonium bromide(DTAB). Various temperatures and liquor ratio and pH conditions were also studied to optimize aftertreatment properties. Berberine chloride finished sample showed the good color fastness. Cetylpyridinium chloride(CPC) finished sample showed very effective antibacterial properties against Staphylococcus aureus and Klebsiella pneumoniae.

PCM Property Measurement (PCM 소재 특성 측정)

  • Lee, Yong Woo;Jo, Ye Lim;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.51-54
    • /
    • 2014
  • Energy storage not only reduces the mismatch between supply and demand but also improves the performance and reliability of energy systems. The different forms of energy that can be stored, including mechanical, electrical and thermal energy. Phase change materials (PCM) are latent heat storage materials. A large number of phase change materials (organic, inorganic and eutectic) are available in any required temperature range. We concentrated on eutectic materials and made a eutectic by mixing urea and choline chloride. Heat capacity ($C_p$) is one of the most important properties to be considered when a process is developed using the eutectic and currently DSC (Differential Scanning Calorimetry) has been proved as an effective technique to measure the heat capacity. This study focused on measuring heat capacity ($C_p$) of the mixing urea and choline chloride by DSC.

Preparation of Shape Stabilized PCM Using Porous Materials for Application to Buildings (건축적용을 위한 다공성 물질을 이용한 상안정 PCM 제조)

  • Jeong, Su-Gwang;Yu, Seulgi;Jang, Seulae;Park, Jin-Sung;Kim, Taehyun;Lee, Jeong-Hun;Kim, Sumin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.432-437
    • /
    • 2013
  • The increase of greenhouse gas emission and decrease of fossil fuel are being caused by the indiscreet consumption of energy by people. Recently, green policy has been globally implemented to reduce energy consumption. This paper studied the research to reduce the energy consumption in buildings, by using the heat storage properties of PCM. PCM has to prevent leakage from the liquid state. Therefore, we prepared form stable PCM, by using the vacuum impregnation method. Three kinds of organic PCMs were impregnated into the structure of porous material. The characteristics of the composites were determined by using SEM, DSC, FTIR and TGA. SEM morphology showed the micro structure of silica fume/PCM. Also, thermal properties were examined by DSC and TGA analyses; and the chemical bonding of the composite was determined by FTIR analysis.

A Study on Chemical Modification of Papermaking Fibers (I) - Improved Physical Characteristics from Partial Carboxymethylated Pulps - (제지용(製紙用) 섬유(纖維)의 화학적(化學的) 개질(改質)에 관한 연구(硏究) (I) - Partial Carboxymethylation 처리에 의한 물성(物性) 향상(向上) -)

  • Choi, Jeong-Heon;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.37-46
    • /
    • 1995
  • The substitution of carboxymethylated hydroxyl group in pulp revealed more hydrophilic than hydroxyl group. And then fibers were more flexible, swell more which leads to better conformation between fibers in turn this raise paper strength. In this paper, we tried to chemical modifyings of recycled fiber, OCCs(old corrugated containers). Many researchers have examined chemical modification of papermaking fiber by partial carboxymethylation(PCM) using a organic solvent processes. We made modified PCM processes adapted waters m replace of the organic solvent. Our testings for the optimum conditions on the new method, conditions as reaction time, temperature, liquor ratios were designed likely plant system. Freenesses(SR$^{\circ}$) were increased following on carboxyl content of the samples. Handsheets of untreated samples and partial carboxymethylated OCCs were made by optimum conditions on different concentrations of the reagent. As results, maximum 25% strength increasing effects were obtained by the new method.

  • PDF

Burn-up Characteristics of Polymer-Modified Cement Mortar Used for Building Repair (고온시에서의 폴리머 시멘트 모르타르의 연소특성에 관한 연구)

  • Kim, Hyung-Jun;Noguchi, Takahumi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.295-298
    • /
    • 2012
  • Repair and strengthening is necessary to extend the service life of existing buildings. Polymer-modified cement mortar (PCM) has been extensively used as a high performance material particularly for finishing and repairing works in concrete building because of itsexcellent adhesion, waterproofing, resistance to chemical attack, and workability. As PCM contains organic polymer, it is necessary to clarify its properties at high temperature under fire, on which sufficient data are not available. This paper evaluated the burn-up characteristics of polymer-modified cement mortar with cone calorimeter test, non-combustibility test and flammability test with experimental parameters such as the types of polymer, unit-polymer content, polymer-cement ratio and thickness of the specimen.

  • PDF

Fabrication of active cooling e-Textiles (스마트 의류용 전도성 직물의 제조 및 특성 분석)

  • Lee, Seung-A;Lee, Chang-Hwan;Kim, Ki-Tai;Kim, Joo-Yong
    • Textile Coloration and Finishing
    • /
    • v.20 no.6
    • /
    • pp.82-86
    • /
    • 2008
  • Cooling function is definitely one of the most desirable attribute of clothing. In spite of the recent progress on phase changing material(PCM) research, the final products with sufficient amount of cooling capability have not yet to be developed in market. A new concept of cooling fabrics has been proposed by applying "Peltier effect" to textile materials. It occurs whenever electrical current flows through two dissimilar conductors; depending on the direction of current flow, the junction of the two conductors is absorbed or released heat. This effect has been tested on P-type and N-type conducting polymers. A P-type conductive polypyrrole coated fabric was synthesized by in-situ polymerization on plain weave PET to make conductive fabrics. And an N-type electrically conductive material was synthesized by treatment of MWNT and polyethyleneimine(PEI). A noticeable amount of temperature difference has been found on the fabrics.

ONIOM and Its Applications to Material Chemistry and Catalyses

  • Morokuma, Keiji
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.797-801
    • /
    • 2003
  • One of the largest challenges for quantum chemistry today is to obtain accurate results for large complex molecular systems, and a variety of approaches have been proposed recently toward this goal. We have developed the ONIOM method, an onion skin-like multi-level method, combining different levels of quantum chemical methods as well as molecular mechanics method. We have been applying the method to many different large systems, including thermochemistry, homogeneous catalysis, stereoselectivity in organic synthesis, solution chemistry, fullerenes and nanochemistry, and biomolecular systems. The method has recently been combined with the polarizable continuum model (ONIOM-PCM), and was also extended for molecular dynamics simulation of solution (ONIOM-XS). In the present article the recent progress in various applications of ONIOM and other electronic structure methods to problems of homogeneous catalyses and nanochemistry is reviewed. Topics include 1. bond energies in large molecular systems, 2. organometallic reactions and homogeneous catalysis, 3. structure, reactivity and bond energies of large organic molecules including fullerenes and nanotubes, and 4. biomolecular structure and enzymatic reaction mechanisms.

Measurement of Thermo-physical Properties of Organic Phase Change Materials using Modified T-history Method (수정된 T-history 법을 이용한 유기 상전이 물질들의 열 물성 측정)

  • Dao, Van-Duong;Choi, Hong-Ki;Choi, Ho-Suk;Oh, Jun-Taek;Kim, Jong-Kuk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.93-97
    • /
    • 2010
  • In this study, we have measured the thermo-physical properties of pure organic phase change materials (PCMs) and their mixtures which have the melting points from 0 to $15^{\circ}C$ by using a modified T-history method. These organic PCMs can be used as coolant materials for packaging and shipping of vaccines. Through measuring the thermophysical properties of pure paraffins, we were able to know that we could improve the reliability of measurement if we considered the melting point of each material and subsequently decided an optimum coolant temperature for each system. The modified T-history method showed a potential usefulness for reliably measuring thermo-physical properties of organic mixtures with avoiding possible inaccuracy of measurement due to using a small amount of sample at DSC measurement.