• Title/Summary/Keyword: Organic Fertilizer (100%)

Search Result 249, Processing Time 0.028 seconds

Development of Nurserγ Soil for Rice Seedling (Phyllite를 이용한 수도용(水稻用) 육묘(育苗) 상토개발(床土開發))

  • Park, Young-Hee;Chang, Ki-Woon;Hong, Jei-Gu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.71-81
    • /
    • 2002
  • The study was carried out to develop nursery soil for rice seedling of phyllite. First of all, physico-chemical properties of used phyllite in the study through the analysis for agricultural utilization evaluation are as following. Bulk density(BD) of phyllite was $1.31g/cm^3$ each other and porosity had 65% of entire pore size. Also, the water holding capacity(WHC) was 43% at 1/3bar pressure, which phyllite has high WHC. According to, the results the experiments for nursery soil were conducted by mixing the materials such as phyllite, zeolite and hill soil. The mixing ratios were 30, 50, and 70% for zeolite and hill soil into phyllite. These mixed materials were packed in a box by adding 0, 1 and 2g of N-fertilizer. At seedling test, there were increases in the growth of shoot and root of rice for phyllite to zeolite and phyllite to hill soil, respectively. On the other hand, the length of leaf increased with increasing application rate of phyllite, while length and a number of root increased with increasing application rate of hill soil. The growth in the plots of phyllite to zeolite and phyllite to hill soil was better than in control plot. Finally, phyllite plot had efficient results when it compared with others and the study used with phyllite will have to more research and effort for agricultural useful material.

  • PDF

Physical-chemical Properties and Phosphorus Adsorption Characteristics of Soils in Baicheng, China (중국 길림성 백성지역 흑개토의 이화학성 및 인산 흡착 특성)

  • Jin, Sheng-Ai;Lee, Sang-Mo;Choi, Woo-Jung;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.92-96
    • /
    • 2001
  • Soil physical-chemical properties and phosphorous adsorption characteristics were investigated to obtain the informations of the appropriate fertilization and soil management in Baicheng region, China, where agricultural circumstances at present forces to consider the use of land for crop production. Soils were collected from one uncultivated and three cultivated lands on August 1993. Soil $_PH$ was very higher in uncultivated land than in cultivated land, their values were 10.2 and 7.4, respectively. Regardless of cultivation, soil organic matter contents were below 2%, and concentrations of available soil phosphorus expressed as Bray 1 P and Olson P were less than 10 mg P $kg^{-1}$, however, cation exchange capacity was higher than 20 cmol(+) $kg^{-1}$. For uncultivated soil, the values of exchangeable sodium percent and calcium saturation percent were higher than 100%. The major cation of soil saturation paste extracts was Na regardless of land use type. Based on electrical conductivity and sodium adsorption ratio of saturation paste extracts, uncultivated soil was classified as saline-sodic soil and cultivated soil was classified as sodic or normal soil. The maximum adsorption capacity of phosphorus calculated by Langmuir isotherm ranged from 406 to 521 mg P ,$kg^{-1}$. The constraints of soils in Baicheng regions for agricultural cops werw high salt concentration, unfavorable soil chemical composition such as low concentration of available phosphorous, and poor drainage due to soil dispersion by high Na concentration. Therefore, the soil in Baicheng region, need the application of phosphorus fertilizer to increase the soil fertility and the proper soil management to improve the soil physical property especially permeability and soil structure.

  • PDF

Effect of Antibiotic Fermentation Residues on Rice and Tomato Growth (항생물질 발효 부산물이 수도 및 토마토 생육에 미치는 영향)

  • Lim, Soo-Kil;Yang, Han-Chul;Kim, Sung-Bok;Kwon, Hyok-Ji
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.52-56
    • /
    • 1984
  • In order to evaluate the applicability of two kinds of antibiotic fermentation residues on rice and tomato growth, yield, yield components, and some indicators for plant growing status were checked including analysis of physico-chemical properties of these two antibiotic fermentation residues. The results obtained are as follows: 1) These two antibiotic fermentation residues contain high organic matter ($21.6{\sim}24.2%$), phosphorus ($2900{\sim}4600 ppm$) and exchangeable cations ($55.4{\sim}138.3 meq/100 g$,), showing their pH values of $7.0{\sim}8.0$ range. 2) Both have developed net positive charge rather high and stiffly that exhibits high negative ion adsorption capacities, accordingly showing higher zero point of charges($pH 7.0{\sim}8.0$) than those of common soils. 3) The effect of the two kinds of antibiotic fermentation residues on rice growth was more or less the same comparable to the effect of the other fertilizers applied, showing the maximum yield at the application rate of 40 ㎏/10a. 4) The effect of these antibiotic fermentation residues on tomato growth was also similar to effects on rice plant showing the yield increment upon fertilizer application including two antibiotic fermentation residues but no significant differences among fertilizers. 5) According to the plant growing status, plant height, dry matter, number of effective tillers and grain number per panicle of rice and plant height and fresh weight of plant of tomato showed similar trend with yield of both plants.

  • PDF

Soil Properties of Chestnut (Castanea crenata) Stands by Regions in Gyeongnam Province (경상남도 밤나무임지의 지역별 토양특성)

  • Kim, Choonsig;Lim, Jong-Taek;Cho, Hyun-Seo;Goo, Gwan-Hyo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.89-95
    • /
    • 2007
  • This study was carried out to evaluate soil properties by regions from chestnut (Castanea crenata Sieb. et Zucc) stands in Gyeongnam province. Soil physical and chemical properties were measured from soil samples of top 20 em collected from three hillslopes (upper, middle, lower) of the chestnut stands in six regions (Jinjusi, Sacheonsi, Sancheonggun, Hadonggun, Goseonggun, Hapcheongun) where are major chestnut cultivation areas throughout the province. Soil properties were significantly different among regions (p<0.05), while were not significantly different among hillslopes (p>0.05). Soil bulk density, soil pore space, soil pH, organic matter content, total nitrogen, available phosphorus, and CEC were significantly different among regions (p<0.05). Soil bulk density was significantly lower (p<0.05) in Hadonggun ($0.96g/cm^3$ than in other regions ($1.12{\sim}1.22g/cm^3$). Soil pH was below pH 5.03 in most regions and Sancheonggun showed the lowest soil pH value (pH 4.62), followed by Jinjusi, Hadonggun, Hapcheongtm, Goseonggun, and Sacheonsi. Organic matter content was highest in Hadonggun (6.46%), while other regions ranged between 2.93% and 3.47%. Total nitrogen content showed a similar trend like the organic matter content. Available phosphorus was above 100 ppm in Jinjusi, Hadonggun and Sancheonggun, but Sacheonsi showed the lowest concentration (15 ppm) among the regions. Cation Exchange Capacity (CEC) was above 10 cmolc/kg in Goseonggun and Hadonggun, but below 8.6 cmolc/kg in Jinjusi and Hapcheongtm. Potassium content ranged between 0.07 and 0.14 cmolc/kg, and magnesium was above 0.66 cmolc/kg in all regions. The results indicate that soil property in chestnut stands was different among regions in Gyeongnam province. This suggested that the chestnut stands should be managed by the fertilization application reflected in the variability of regional soil property in chestnut stands.

Effects of Devarda's Alloy Addition on Determination of Total Nitrogen and Inorganic Nitrogen in Liquid Livestock Manure (Devarda's alloy 첨가가 축산분뇨 액비의 총 질소 및 무기태 질소 정량에 미치는 영향)

  • Lim, Tae-Jun;Kim, Ki-In;Park, Jin-Myeon;Lee, Seong-Eun;Noh, Jae-Seung;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.223-226
    • /
    • 2012
  • Liquid livestock manure (LLM) has been used as a nitrogen fertilizer source for horticulture plants. LLM contains organic nitrogen (N), ammonium, nitrate, and nitrite. The amount of nitrate and nitrite in LLM are usually small compared to the amount of ammonium in it and so they can be negligible if total nitrogen (N) concentration in LLM is higher than $1,000mg\;L^{-1}$. However, if total N concentration in LLM is less than $1,000mg\;L^{-1}$, the amount of nitrate and nitrite may affect total N concentration in LLM. Currently, Kjeldahl digestion method is mainly used for ammonium-N in LLM. Therefore, it is ineffective to analyze nitrate-N and nitrite-N. The objective of this study was to evaluate whether the total N concentrations are affected by the amount of nitrate-N and nitrite-N with diverse LLMs by Kjeldahl method (with and without Devarda's alloy after Conc. sulfuric acid digestion). Five liquid livestock manure samples were collected at swine farms in Ansung and Icheon. All LLM samples were stored at $25^{\circ}C$, subsampled at every $15^{th}$ day for 90 days, and analyzed for total N, ammonium-N, and nitrate-N. At the $90^{th}$ day, LLM samples were analyzed with and without Devarda's alloy after Conc. sulfuric acid digestion. Potassium nitrate, ammonium nitrate, and ammonium chloride were used to determine the N recovery percentages. Total N concentration ranged from 560 to $4,230mg\;L^{-1}$. Nitrate-Ns were found in all LLM samples, ranged from 21 to $164mg\;L^{-1}$. N recovery percentages with potassium nitrate were 0 % without Devarda's alloy and 100% with Devarda's alloy because adding Devarda's alloy facilitated nitrate-N into ammonium-N conversion. Total Ns were significantly different between two methods, with and without Devarda's alloy. Total N concentrations were $210mg\;L^{-1}$ at LLM 4 and $370mg\;L^{-1}$ at LLM 5 without Devarda's alloy and $290mg\;L^{-1}$ at LLM 4 and $490mg\;L^{-1}$ at LLM 5 with Devarda's alloy. These results suggest that if total N of LLM is less $1,000mg\;L^{-1}$, additional procedure such as adding Devarda's alloy can be used to estimate the total N and inorganic N better.

A Study on the Characteristics of a Reclaimed Marine Soils (Gupo Series) distributed on the Southern Coastal Area of Korea (우리나라 남해안(南海岸)에 분포(分布)된 간척지(干拓地) 토양(土壤)의 특성(特性)에 관(關)한 조사연구(調査硏究)(구포통(鳩浦統)에 관(關)하여))

  • Juug, Yeon-Tae;Um, Ki-Tae;Shin, Yong-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.2
    • /
    • pp.99-105
    • /
    • 1976
  • After investigation of soil characteristics the properties of a reclaimed marine soil (Gupo series) distributed along the southern coastal areas of Korea are summarized as follows: 1. Gupo soils distributed in the southern Ria coastal area are derived from rolling to hilly materials and are poorly sorted with less influences of river fluvial action. These soils have high content of sand compared with the broad fluvio-marine soils in the western coastal areas. 2. The morphological features of the poorly drained Gupo soils are greyish brown sandy loam with a few yellowish mottles in the surface horizon and are grey sandy loam with a few gravel in the sub-strata. The ground water table remains around 10-30cm below the surface. These soils, recently reclaimed younger deposits, do not show any evidence of illuviation. 3. The "n" value (about 0.8) of the Gupo soils indicates physically unripened soils. 4. pH value of these soils shows more than 8.0 throughout the profile. Organic matter contents are extremely low (around 0.5%) except 1.2 percent in the surface horizon. C.E.C. ranges from 7 to 9m.e/100g which is lower than average in the country. The ratios of extractable cations such as Ca, Mg, Na and K of the surface horizon are 20:7:4:1. Base saturation is more than 60%. Available phosphate content is very low that is less than 25 ppm. Electric conductivity of the soils at $25^{\circ}C$ ranges 7 to 12 mmhos/cm and increased with depth. 5. According to classification of soil based on physical ripening, the Gupo soils can be classified into "Unripe soils with half-ripe sub-soils". The soils could be classified into "Hydric Haplaquents" in the original of the 7th Approximation (1960), but into "Typic Haplaqents in the supplement of 7th approximation which the physical ripening condition is not clearly expressed. Soil Taxonomy, apparently the final version of the 7th approximation, defines the soils as "Haplic Hydraquents" that clearly show the condition of physical ripening as well as other properties. Other several classification systems applied do not describe physical ripening condition of the soils.

  • PDF

Application of Principle in Metal-Ligand Complexation to Remove Heavy Metals : Effects of Metal Concentration, pH and Temperature (금속(金屬)-Ligand 착염형성(錯鹽形成)에 의한 중금속(重金屬) 제거방법(除去方法)에 관(關)한 연구(硏究) : 중금속(重金屬) 농도(濃度), pH 및 온도(溫度)의 효과(效果))

  • Yang, Jae-E;Shin, Yong-Keon;Kim, Jeong-Je
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.37-42
    • /
    • 1993
  • Influences of metal concentration, pH and temperature on metal-ligand precipitate formation were investigated, as a part of projects for removing heavy metals from aqueous solution employing the principles in metal-ligand complexation. Aqueous solutions of HA or FA were reacted with those of heavy metals with 1:1 ratio. Efficiency of humic (HA) or fulvic acid (FA) on removing metals was evaluated by separating the precipitates from soltuions with the filtering method. When HA was a counter ligand, there existed three ranges of metal concentrations affecting precipitation : precipitate fromation was not available, was reached to the maximum, and afterwards was decreased again. The concentration ratios of metal to HA for initiating complexation were dependent upon kinds of metal and concentrations of ligand. Amount of Pb to form maximum precipitates per unit mg of HA was 1.3 times higher than that of Cu. When FA was a counter ligand, concentrations of metal-FA precipitates were increased proportionally with the treated metal concentrations. Efficiency of FA fro removing Pb was nearly 100%, but it was ranged from 12 to 19% for Cu, depending on FA concentration. pH exerted a considerable effect on complexation between Pb and FA, showing precipitates were increased six times at most per unit increase of pH. Ranges of pH increasing significantly the mounts of precipitates were coincied with pH jump ranges of the titration curve of organic ligands. As increasing temperature from 15 to $55^{\circ}C$, increases of FA-Cu precipitates were doubled, but those of FA-Pb were accounted for only 6%, However, HA-metal complexation was not affected by temperature.

  • PDF

Measurement of Phosphorus Buffering Power in Various Soils using Desorption Isotherm (탈착 등온식을 이용한 토양 중 인산 완충력 측정)

  • Lee, Jin-Ho;Doolittle, James J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.220-227
    • /
    • 2004
  • Phosphorus desorption study is essential to understanding P behavior in agricultural and environmental soils because phosphorus is considered as two different aspects, a plant nutrient versus an environmental contaminant. This study was conducted to determine soil P buffering power related to P desorption quantity intensity (Q/I) parameters, $Q_{max}$(an index of P release capacity) and $l_0$(an index of the intensity factor), and to investigate the characteristics of relationship between the P desorption Q/I parameters and the soil properties. Soil samples were prepared with treatments of 0 and $100mg\;P\;kg^{-1}$ applied as $KH_2PO_4$ solution. The P desorption Q/I curves were obtained by a procedure using anion exchange resin beads and described by an empirical equation ($Q=aI^{-1}+bln(I+1)+c$). The P desorption Q/I curves for the high available P (${\g}20mg\;kg^{-1}$ of Olsen P) soils were characteristic concave trends with or without soil P enrichment, whereas for the low available P (${\lt}20mg\;kg^{-1}$ of Olsen P) soils, the anticipated Q/I concave curves could not be obtained without a proper amount of P addition. When the soils were enriched in phosphates, the values of desorbed solid phase labile P and solution P, such as $Q_{max}$ and $I_0$ respectively, were increased, but the ratio of $Q_{max}$ versus $I_0$ was decreased. Thus, the slope of desorption Q/I curve represented as phosphorus buffering power, $|BP_0|$, is decreased. The $|BP_0|$ values of the high available P soils ranged between 48 and $61L\;kg^{-1}$ in the P untreated samples and between 18 and $44L\;kg^{-1}$ in the P enriched samples. Overall $|BP_0|$ values of both low and high available P soils treated with $l00mg\;P\;kg^{-1}$ ranged between 14 and $79L\;kg^{-1}$. The $Q_{max}$, values ranged between 71.4 and $173.1mg\;P\;kg^{-1}$, and the lo values ranged between 0.98 and $3.82mg\;P\;L^{-1}$ in the P enriched soils. The $Q_{max}$ and $I_0$ values that control the P buffering power may be not specifically related to a specific soil property, but those values were complicatedly related to soil pH, clay content, soil organic matter content, and lime. Also, phosphorus release activity, however, markedly depended on the desorbability of the applied P as well as the native labile P.

Analysis of Nutrient Cycling Structure of a Korean Beef Cattle Farm Combined with Cropping as Affected by Bedding Material Types (깔개물질의 종류에 따른 한우-경종 결합 농가의 양분순환 구조 분석)

  • Lim, Sang-Sun;Kwak, Jin-Hyeob;Park, Hyun-Jung;Lee, Sun-Il;Lee, Dong-Suk;Kim, Yong-Soon;Yun, Bong-Ki;Kim, Sun-Woo;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.354-361
    • /
    • 2008
  • In this study, we analyzed nutrient cycling structure of a small farm (cattle of 100 heads and arable lands of 2.5 ha) in Jeonnam province to investigate the effects of nutrients input by the addition of bedding materials (sawdust and rice hull) and nutrients loss before the application to the soils (the period during manure storage in the feedlot and composting process) on nutrient cycling structure. Sawdust and rice hull added as bedding materials increased N by 1.6% and 14.2% and $P_2O_5$ by 3.1% and 27.4%, respectively, relative to the amount of nutrients produced by excretion. This result suggests that the addition of nutrients via bedding materials should be considered for better estimation of nutrient balance. The most significant characteristics of the nutrient cycling structure was loss of mass and nutrients during the storage (21 days) and composting period (90 days). During this period, 78.4% of N and 9.5% of $P_2O_5$ was lost from sawdust compost; meanwhile, the percentages of loss for rice hull compost were 81.6% and 10.3%, respectively. A lower percentage of nutrients loss in sawdust compost than that in rice hull compost was attributed to the relatively slow decomposition rate of organic materials in the sawdust compost which has higher C/N ratio and lignin contents. Therefore, it was concluded that estimation of nutrient balance should be conducted based on nutrient contents in the final compost being applied to the lands rather than the amount of nutrients contained in the livestock excretion. In addition, the effects of bedding materials on nutrient losses should be also taken into account.

The Change of Physico-Chemical Properties of Paddy Soil in Reclaimed Tidal Land (간척지 논토양의 물리화학성 변동에 관한 연구)

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Jung, Ji-Ho;Kim, Byeong-Su;Park, Woo-Kyun;Ryu, Jin-Hee;Kim, Taek-kyum;Kim, Jae-Duk;Kim, Seong-Jo;Baek, Seung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.94-102
    • /
    • 2008
  • The physico-chemical properties of ten reclaimed saline soils in five soil series of west-south Korea were analyzed according to the years past after reclamation. The soil samples were collected at the same sites two times in 2000 and 2004. The physico-chemical properties in 2000 had been changed in 2004 as follows. Soil salinity was the highest in Podu and desalinization period was the shortest in Munpo and Yeompo. Seasonal ground water level were above 100 cm in all regions that were 30 years old reclaimed tidal land, which was the same results of normal paddy field. In the case of soil physical changes, bulk density increased in fine textured soil (Poseung and Podu) but decreased in coarse textured soil (Gwanghwal, Munpo, and Yeompo). Porosity decreased in fine textured soil(Poseung and Podu) but increased in coarse textured soil. These reason were as follows. Fine textured soil were increased in solid phase but decreased in liquid and gaseous phase. Coarse textured soil, Gwanghwal and Munpo except for Yempo, were increased in gaseous phase but decreased in solid and liquid phase. Yempo that have low water table level were increased in liquid phase but decreased in solid and gaseous phase. Soil hardness increased in 4 soil series except for Munpo. In the case of chemical property changes, although there were more or less difference, it showed decreasing tendencies. Soil pH, the content of organic matter, available phosphate, and available silicate of five soil series were decreased during the four years. The content of exchangeable cation also decreased except for magnesium.