• Title/Summary/Keyword: Organic/Inorganic Material

Search Result 377, Processing Time 0.03 seconds

A Study on Light-weight Inorganic Insulation (경량 무기 단열재에 관한 연구)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.217-218
    • /
    • 2012
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The organic material is be toxic gas emission, when a fire occurs. And it has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. This study focused on thermal conductivity and density of inorganic foam material for using industrial by-products materials.

  • PDF

A Study of Fire-resistance Light-weight Inorganic Foam Material Using Cullet and Fly-ash (유리분말과 플라이애시를 사용한 내화성 경량 무기발포 소재 연구)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.79-81
    • /
    • 2011
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The organic material is due to toxic gas emission, when a fire occurs. And it has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. This study focused on evaluation of the physical properties and fire-resistance of inorganic foam material for using industrial by-products materials for the applicability of Fire-resistance Light-weight material.

  • PDF

Organic-Inorganic Hybrid Thermoelectric Material Synthesis and Properties

  • Kim, Jiwon;Lim, Jae-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.272-277
    • /
    • 2017
  • Organic-inorganic hybrid thermoelectric materials have obtained increasing attention because it opens the possibility of enhancing thermoelectric performance by utilizing the low thermal conductivity of organic thermoelectric materials and the high Seebeck coefficient of inorganic thermoelectric materials. Moreover, the organic-inorganic hybrid thermoelectric materials possess numerous advantages, including functional aspects such as flexibility or transparency, low cost raw materials, and simplified fabrication processes, thus, allowing for a wide range of potential applications. In this study, the types and synthesis methods of organic-inorganic thermoelectric hybrid materials were discussed along with the methods used to enhance their thermoelectric properties. As a key factor to maximize the thermoelectric performances of hybrid thermoelectric materials, the nanoengineering to control the nanostructure of the inorganic materials as well as the modification of the organic material structure and doping level are considered, respectively. Meanwhile, the interface between the inorganic and organic phase is also important to develop the hybrid thermoelectric module with excellent reliability and high thermoelectric efficiency in addition to its performance in various electronic devices.

Photochromism of Diarylethene-Doped Organic-Inorganic Hybrid Low Melting Glass (Diarylethene이 첨가된 저융점 유-무기 하이브리드 유리의 광변색 특성)

  • Kim, Ji-Kyung;Kim, Myeong-Jeong;Park, Sung-Je;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.28-32
    • /
    • 2006
  • Diarylethene in photochromic materials was doped in organic-inorganic hybrid low-melting glasses were synthesized through a nonaqueous acid-base reaction process, which consists of network units including a small number of bridging oxides. The organic phase is a dichlorodimethylsilane while the inorganic phase is a tin(II) chloride. Diarylethene was incorporated into the glasses without any degradation of its functionality. The open form of diarylenthene, which is converted from the opening one upon UV-irradiation, is change to the closed form visible light-irradiation. The rate constant of the photochemical reaction is $31.78\times10^{-3}s^{-1}$ with 400 W UV lamp irradiation.

A Study on Organic/Inorganic Materials Deposition Using SAW-ED System (SAW-ED 시스템을 이용한 유/무기 소재 증착에 관한 연구)

  • Kim, Hyun Bum;Kim, Kyung Hwan;Ghayas, Siddiqi;Lim, Jong Hwan;Yang, Hyoung Chan;Choi, Kyung Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.100-108
    • /
    • 2016
  • In various industries, many researches studies have been done in using nano thin film fabrication technology. In the field of printed electronics, various electronic devices can be fabricated using a direct printing process of on multiple functional materials. It has the advantages of low prices, environment-friendly environmentally friendly, flexibleility, large scale, mass production produced, simple process and so on. In this study, a viable thin film fabrication technology has beenwas introduced using the surface acoustic wave mechanism for thin film deposition. Fabrication of thin films using organic, inorganic and composite of organic/inorganic materials have been were analyzed through the experimental research. In this experiment, organic material MEH:PPV, inorganic material ZnO and composite material MEH:PPV/ZnO have been depo sited as thin films.

A Study on the Guide Line of Quality of Waterproofing Admixture of Powder Type for Concrete (콘크리트 혼입용 분말형 구체방수재의 품질기준에 관한 연구)

  • 우영제;배기선;오상근;김형무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.967-974
    • /
    • 2000
  • By testing compressive strength, water absorption and water premeablity, to establish the standard of quality of waterproofing admixture of power type for concrete, we propose guide line as following ; $.$Setting time: more than 1 hour, within 10 hours $.$Slump: To be satisfied with request of user $.$Air content: To be satisfied with request of user $.$Safety: Without crack or deformation $.$Ratio of compressive strength: $\circled1$ At 3 days : more than plain specimen by 0.9 (An inorganic material) more than plain specimen by 0.4 (An inorganic material mixed organic) $\circled2$ At 7, 28 days : more than plain specimen by 1.0 $.$Ratio of water absorption Coefficient: $\circled1$An inorganic material: less than plain specimen by 1.0 $\circled2$ An inorganic material mixed organic : under than plain specimen by 0.8 $.$Ratio of water premeablity : $\circled1$ An inorganic material : less than plain specimen by 1.0 $\circled2$ An inorganic material mixed organic : under than plain specimen by 0.8

Microwave Properties of Organic-inorganic Composite Material Antenna with Various Fabrication Method of Conduction Material (전도체 형성 방법에 따른 유무기 복합재료 안테나의 고주파 특성)

  • Park, Sang-Hoon;Seong, Won-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.832-837
    • /
    • 2006
  • Antennas were fabricated by physical(adhesive) and chemical(deposition+plating) method on organic-inorganic composite material. And antennas were measured dielectric constant and gain. Dielectric constant of antennas were fabricated by physical method was decreased with increase of adhesive tape thickness and number of conduction material composition. But antennas were fabricated by chemical method was reached to 90 % of dielectric material. Gain of antennas were fabricated by physical method was decreased with increase of adhesive tape thickness. But they were unrelated with conduction material composition. The other side antennas were fabricated by chemical method excelled more 0.8 dBic than antennas were fabricated by physical method in gain of antenna. Finally, chemical method can expect excellent product process because it can produce smaller size, higher gain and elimination of many handworks.

Physical properties of Inorganic Foam Materials Using by-product Cullet (폐유리분말의 종류에 따른 무기발포체의 물리적 특성)

  • Shin, Hyeon-Uk;Kim, Ji-Hyeon;Song, Hun;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.5-6
    • /
    • 2015
  • This study is to development of inorganic insulation material using by-product materials. The organic material is due to toxic gas emission, when a fire occurs. And it has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. In this study, cullet and fly ash were used as basic materials in order to secure a recycling technology of by-products which was mostly discarded and reclimed, and measure of physical properties of Inorganic foam material.

  • PDF

Clinical application and classification of bone graft material according to component (임상가를 위한 특집 2 - 구성성분별 골이식재의 분류와 임상적용)

  • Kim, Young-Kyun
    • The Journal of the Korean dental association
    • /
    • v.48 no.4
    • /
    • pp.263-274
    • /
    • 2010
  • I classified the bone graft material according to the component. Most bone graft material is composed of inorganic and organic constituent. Organic component such DBM is associated with osteoinduction. Inorganic components such as hydroxyapatite, $\beta$-TCP, calcium sulfate, bioactive glass, polymer are associated with osteoconduction. Autogenous bone graft is ideal material. We can select any biocompatible material for the restoration of small filling defect with intact bony wall. However, we should select first osteogenetic and osteoinductive material to regenerate the viable bone tissue.

Removal of Volatile Organic Compounds with Organic-Inorganic Hybrid Mesoporous Materials (유·무기 혼성 메조포러스 물질의 휘발성 유기화합물 제거능)

  • Jeong, Han Mo;La, Young Soo;An, Jin Hee;Jo, Ah Young;Choi, Mi Yeon;Kim, Suck Man;Moon, Nam Gu;Yoon, Young Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.719-723
    • /
    • 2005
  • Organic-inorganic hybrid mesoporous materials were prepared by co-condensation of organosilanes with tetraethyl orthosilicate (TEOS) or 1,2-bis(triethoxysilyl) ethane (BTSE). Their removal capability of volatile organic compounds (VOCs) in the air was evaluated and compared with that of inorganic hydrophilic mesoporous material, SBA-15 that was prepared with TEOS only. It was found that the increased hydrophobicity of mesoporous materials due to the presence of organic group, could enhance the VOCs removal by adsorption in the air. An organic-inorganic hybrid material prepared by the co-condensation of BTSE/phenyl triethoxysilane (90/10 by weight) was a typical example of superior adsorbent. It was also observed that these organic-inorganic hybrid materials can be utilized as absorbents for the removal of oil dispersed in water.