• Title/Summary/Keyword: Organ motion

Search Result 86, Processing Time 0.024 seconds

Double-String Model for Auditory Transduction of Drosophila

  • Lee, Woo Seok;Ahn, Kang-Hun;Lee, Jeongmi;Chung, Yun Doo;Mhatre, Natasha;Robert, Daniel
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1225-1229
    • /
    • 2018
  • The Drosophila auditory system consists of four large basal segments: the arista, the funiculus, the pedicel, and the scape. When an acoustic stimulus is applied to the arista and the funiculus their mechanical vibrations are transmitted to chordotonal neurons in Johnston's organ where mechanoelectric transduction arises. We study the mechanotransduction mechanism in the Drosophila auditory system by using a laser Doppler vibrometer (LDV) and extracellular electrophysiology. We find that large and small peaks appear alternatively and that the antenna vibration is asymmetric depending on whether the pedicel and the scape are fixed. Interestingly, we find that this asymmetric vibration accompanies the alternating neural peak structure. Here, we propose a mathematical model to explain the alternating peak structure by using a model consisting of two opposing neurons that are modeled as strings. Generally, strings have tension only when they are elongated. This property allows the alternating neural peaks for asymmetric antenna motion.

Development of RMRD and Moving Phantom for Radiotherapy in Moving Tumors

  • Lee, S.;Seong, Jin-Sil;Chu, Sung-Sil;Yoon, Won-Sup;Yang, Dae-Sik;Choi, Myung-Sun;Kim, Chul-Yong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.63-63
    • /
    • 2003
  • Purpose: Planning target volume (PTV) for tumors in abdomen or thorax includes enough margin for breathing-related movement of tumor volumes during treatment. We developed a simple and handy method, which can reduce PTV margins in patients with moving tumors, respiratory motion reduction device system (RMRDs). Materials and Methods: The patients clinical database was structured for moving tumor patients and patient setup error measurement and immobilization device effects were investigated. The system is composed of the respiratory motion reduction device utilized in prone position and abdominal presser (strip device) utilized in the supine position, moving phantom and the analysis program, which enables the analysis on patients setup reproducibility. It was tested for analyzing the diaphragm movement and CT volume differences from patients with RMRDs, the magnitude of PTV margin was determined and dose volume histogram (DVH) was computed using a treatment planning software. Dose to normal tissue between patients with RMRDs and without RMRDs was analyzed by comparing the fraction of the normal liver receiving to 50% of the isocenter dose(TD50). Results: In case of utilizing RMRDs, which was personally developed in our hospital, the value was reduced to $5pm1.4 mm$, and in case of which the belt immobilization device was utilized, the value was reduced to 3$pm$0.9 mm. Also in case of which the strip device was utilized, the value was proven to reduce to $4pm.3 mm$0. As a result of analyzing the TD50 is irradiated in DVH according to the radiation treatment planning, the usage of the respiratory motion reduction device can create the reduce of 30% to the maximum. Also by obtaining the digital image, the function of comparison between the standard image, automated external contour subtraction, and etc were utilized to develop patients setup reproducibility analysis program that can evaluate the change in the patients setup. Conclusion: Internal organ motion due to breathing can be reduced using RMRDs, which is simple and easy to use in clinical setting. It can reduce the organ motion-related PTV margin, thereby decrease volume of the irradiated normal tissue.

  • PDF

Analysis of the Dose Distribution of Moving Organ using a Moving Phantom System (구동팬텀 시스템에 의한 움직이는 장기의 선량분포 분석)

  • Kim, Yon-Lae;Park, Byung-Moon;Bae, Yong-Ki;Kang, Min-Young;Lee, Gui-Won;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.18 no.2
    • /
    • pp.81-87
    • /
    • 2006
  • Purpose: Few researches have been peformed on the dose distribution of the moving organ for radiotherapy so far. In order to simulate the organ motion caused by respiratory function, multipurpose phantom and moving device was used and dosimetric measurements for dose distribution of the moving organs were conducted in this study. The purpose of our study was to evaluate how dose distributions are changed due to respiratory motion. Materials and Methods: A multipurpose phantom and a moving device were developed for the measurement of the dose distribution of the moving organ due to respiratory function. Acryl chosen design of the phantom was considered the most obvious choice for phantom material. For construction of the phantom, we used acryl and cork with density of $1.14g/cm^3,\;0.32g/cm^3$ respectively. Acryl and cork slab in the phantom were used to simulate the normal organ and lung respectively. The moving phantom system was composed of moving device, moving control system, and acryl and cork phantom. Gafchromic film and EDR2 film were used to measure dose ditrbutions. The moving device system may be driven by two directional step motors and able to perform 2 dimensional movements (x, z axis), but only 1 dimensional movement(z axis) was used for this study. Results: Larger penumbra was shown in the cork phantom than in the acryl phantom. The dose profile and isodose curve of Gafchromic EBT film were not uniform since the film has small optical density responding to the dose. As the organ motion was increased, the blurrings in penumbra, flatness, and symmetry were increased. Most of measurements of dose distrbutions, Gafchromic EBT film has poor flatness and symmetry than EDR2 film, but both penumbra distributions were more or less comparable. Conclusion: The Gafchromic EBT film is more useful as it does not need development and more radiation dose could be exposed than EDR2 film without losing film characteristics. But as response of the optical density of Gafchromic EBT film to dose is low, beam profiles have more fluctuation at Gafchromic EBT. If the multipurpose phantom and moving device are used for treatment Q.A, and its corrections are made, treatment quality should be improved for the moving organs.

  • PDF

Measurement of Variation in Water Equivalent Path Length by Respiratory Organ Movement

  • Minohara, Shinichi;Kanai, Tatsuaki;Endo, Masahiro;Kato, Hirotoshi;Miyamoto, Tadaaki;Tsujii, Hirohiko
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.90-93
    • /
    • 2002
  • In particle radiotherapy, a shape of the beam to conform the irradiation field is statically defined by the compensator, collimator and potal devices at the outside of the patient body. However the target such as lung or liver cancer moves along with respiration. This increases the irradiated volume of normal tissue. Prior discussions about organ motions along with respiration have been mainly focused on inferior-superior movement that was usually perpendicular to beam axis. On the other hand, the change of the target depth along the beam axis is very important especially in particle radiotherapy, because the range end of beam (Bragg peak) is so sharp as to be matched to distal edge of the target. In treatment planning, the range of the particle beam inside the body is calculated using a calibration curve relating CT number and water equivalent path length (WEL) to correct the inhomogeneities of tissues. The variation in CT number along the beam path would cause the uncertainties of range calculation at treatment planning for particle radiotherapy. To estimate the uncertainties of the range calculation associated with patient breathing, we proposed the method using sequential CT images with respiration waveform, and analyzed organ motions and WELs at patients that had lung or liver cancer. The variation of the depth along the beam path was presented in WEL rather than geometrical length. In analyzed cases, WELs around the diaphragm were remarkably changed depending on the respiration, and the magnitude of these WEL variations was almost comparable to inferior-superior movement of diaphragm. The variation of WEL around the lung was influenced by heartbeat.

  • PDF

A study of Nutrient Qi(營氣) and Defense Qi(衛氣) from the modern perspective of Visceral body and Somatic body (현대적인 관점인 내장계와 체벽계로 바라본 영기(營氣)와 위기(衛氣)에 대한 연구)

  • Da Hyun Ju;Byoung-Soo Kim
    • The Journal of Korean Medicine
    • /
    • v.43 no.3
    • /
    • pp.36-48
    • /
    • 2022
  • Objectives: The aim of this study is to modernize Nutrient Qi(營氣) and Defense Qi(衛氣) from the point of view of Visceral Body and Somatic Body. Methods: Investigate the areas of body and function of Nutrient Qi(營氣) and Defense Qi(衛氣) recorded in the 『HuangdiNeijing(黃帝內經)』 and 『Dongeuibogam(東醫寶鑑)』. And investigate Visceral Body and Somatic Body that anatomical structure is divided according to function based on the book 『Life and Rhythm』. Results: Nutrient Qi(營氣) works to nourish the body such as viscera and bowels in the meridian. Defense Qi(衛氣) works to protect the body such as skin, limb joint, eye outside the meridian. The human body is divided into Visceral Body called a vegetable organ and Somatic Body called an animal organ. Visceral body is the organ that manages "nutrition-reproductive" and is divided into the intestine(腸管), blood vessels(血管), and the nephridium(腎管). Somatic Body is an organ that manages 'sensory-motion' and is divided into a three-layer structure: the outer layer covering the body surface, the nerve layer connecting the outer layer and the muscle layer, and the muscle layer controling contraction and movement. Conclusions: It is estimated that Nutrient Qi(營氣) is similar to Visceral Body, and Defense Qi(衛氣) is similar to Somatic Body.

Investigation of Nanofiber and Thermosensitive Scaffold for Intervertebral Disc through Organ Culture (기관배양을 통한 추간판 재생용 나노파이버 및 온도 감응성 지지체에 대한 검증)

  • Lee, Yong-Jae;Shin, Ji-Won;Shin, Ho-Jun;Kim, Chan-Hwan;Park, Ki-Dong;Bae, Jin-Woo;Seo, Hyoung-Yeon;Kim, Young-Jick;Shin, Jung-Woog
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.512-519
    • /
    • 2007
  • The purpose of this study is to investigate the potential of a novel tissue engineering approach to regenerate intervertebral disc. In this study, thermosensitive scaffold (chitosan-Pluronic hydrogel) and nanofiber were used to replace the nucleus pulposus (NP) and annulus fibrosus of a degenerated intervertebral disc, leading to an eventual regeneration of the disc using the minimally invasive surgical procedure and organ culture. In preliminary study, disc cells were seeded into the scaffolds and cellular responses were assessed by MTT assay and scanning electron microscopy (SEM). Based on these results, we could know that tissue engineered scaffolds might provide favorable environments for the regeneration of tissues. Organ culture was performed in fresh porcine spinal motion segments with endplates on both sides. These spinal motion segments were classified into three groups: control (Intact), injured NP (Defect), and inserting tissue engineered scaffolds (Insert). The specimens were cultivated for 7 days, subsequently structural stability, cell proliferation and morphological changes were evaluated by the relaxation time, quantity of DNA, GAG and histological examination. In these results, inserting group showed higher relaxation time, reduced decrement of DNA contents, and accumulated GAG amount. Consequently, the tissue engineered scaffolds used in this study seen to be a promising base scaffolds for regenerative intervertebral disc due to its capacity to absorb external dynamic loading and the possible ideal environment provided for disc cell growing.

Research on EEG-based minimization plan of motion sickness (EEG 기반의 어지럼증 최소화 방안에 관한 연구)

  • Seo, Hyeon-Cheol;Shin, Jeong-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Motion sickness is dizziness symptom that occurs when movement detected in the vestibular organ and movement detected visually are collide with each other. When dizziness occurs, user complains of symptoms such as nausea and vomiting, sense of direction abnormality, and fatigue. These causes of dizziness are various and difficult to differentiate and treat the symptoms. Especially, among the types of dizziness VIMS(Visually Induced Motion Sickness) is a problem to solve in developing VR industry. These VIMS analysis can be done through user's vital signs measurement and feature analysis, and EEG characteristics analysis. Therefore, this paper is discuss the minimization of motion sickness caused by visual information based on EEG signal and present research trends related to it.

Extra-phase Image Generation for Its Potential Use in Dose Evaluation for a Broad Range of Respiratory Motion

  • Lee, Hyun Su;Choi, Chansoo;Kim, Chan Hyeong;Han, Min Cheol;Yeom, Yeon Soo;Nguyen, Thang Tat;Kim, Seonghoon;Choi, Sang Hyoun;Lee, Soon Sung;Kim, Jina;Hwang, JinHo;Kang, Youngnam
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.3
    • /
    • pp.103-109
    • /
    • 2019
  • Background: Four-dimensional computed tomographic (4DCT) images are increasingly used in clinic with the growing need to account for the respiratory motion of the patient during radiation treatment. One of the reason s that makes the dose evaluation using 4DCT inaccurate is a change of the patient respiration during the treatment session, i.e., intrafractional uncertainty. Especially, when the amplitude of the patient respiration is greater than the respiration range during the 4DCT acquisition, such an organ motion from the larger respiration is difficult to be represented with the 4DCT. In this paper, the method to generate images expecting the organ motion from a respiration with extended amplitude was proposed and examined. Materials and Methods: We propose a method to generate extra-phase images from a given set of the 4DCT images using deformable image registration (DIR) and linear extrapolation. Deformation vector fields (DVF) are calculated from the given set of images, then extrapolated according to respiratory surrogate. The extra-phase images are generated by applying the extrapolated DVFs to the existing 4DCT images. The proposed method was tested with the 4DCT of a physical 4D phantom. Results and Discussion: The tumor position in the generated extra-phase image was in a good agreement with that in the gold-standard image which is separately acquired, using the same 4DCT machine, with a larger range of respiration. It was also found that we can generate the best quality extra-phase image by using the maximum inhalation phase (T0) and maximum exhalation phase (T50) images for extrapolation. Conclusion: In the present study, a method to construct extra-phase images that represent expanded respiratory motion of the patient has been proposed and tested. The movement of organs from a larger respiration amplitude can be predicted by the proposed method. We believe the method may be utilized for realistic simulation of radiation therapy.

Implementation of Externally Controllable Miniaturized Capsule for the Stimulation of Intestine (체외 제어 가능한 소화관 자극용 초소형 캡슐 구현)

  • 박종철;박희준;이정우;송병섭;이승하;조진호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2923-2926
    • /
    • 2003
  • In this paper, a swallowable miniaturized capsule, which applicable for electrical stimulation of digestive organ to improve the motion of intestine in research purpose, is proposed and implemented. The developed capsule can be controlled for the behavior of the power on/off, amplitude and pulse rate for the patient stimulus, by internally equipped with miniaturized RF receiver that linked by the command of external transmitter The experimental result of the implemented miniaturized capsule in the animal intestine show the ability of effective control for the stimulus parameters.

  • PDF

The Effect of Fascial Distortion Model on Maximal Grip Strength, Force Sense and Range of Motion (근막변형모델이 최대악력, 힘 감각 그리고 관절가동범위에 미치는 효과)

  • Kim, Ji-Young;Kim, Seong-Yeol
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2021
  • Purpose : The fascia is the body's largest sensory organ affected by mechanical stimuli such as pressure. Fascial distortion model (FDM) is one of the fascia treatment techniques, and it is based that most musculoskeletal problems are caused by three-dimensional distortion of the fascia. Until now, some studies have been conducted to investigate the effect of FDM, but it is still not enough. In this study, among the six techniques of FDM, trigger band (TB) and cylinder distortion (CyD) were applied to the forearm to investigate the immediate effect on the maximal grip strength, force sense and range of motion. Methods : 22 healthy adults in their 20s and 30s participated. Before and after the application of FDM, maximal grip strength, force sense and range of motion were measured. For analysis, a paired t-test was performed, and the significance level was set to p<.05. Results : After FDM, there were a significant differences that increased the force sense and the range of motion (p<.05). But the maximal grip strength did not show a significant difference (p>.05). Conclusion : The results of this study, the FDM did not affect maximal grip strength, but it was shown to increase the sense of force and range of motion. We assumed that it is the result of the changes in the states of the fascia and changes in the activity of mechanical receptors induced by pressure and stretch from FDM application.