Browse > Article
http://dx.doi.org/10.3938/jkps.73.1225

Double-String Model for Auditory Transduction of Drosophila  

Lee, Woo Seok (Department of Physics, Chungnam National University)
Ahn, Kang-Hun (Department of Physics, Chungnam National University)
Lee, Jeongmi (Department of Life Sciences, University of Seoul)
Chung, Yun Doo (Department of Life Sciences, University of Seoul)
Mhatre, Natasha (School of Biological Sciences, University of Bristol)
Robert, Daniel (School of Biological Sciences, University of Bristol)
Abstract
The Drosophila auditory system consists of four large basal segments: the arista, the funiculus, the pedicel, and the scape. When an acoustic stimulus is applied to the arista and the funiculus their mechanical vibrations are transmitted to chordotonal neurons in Johnston's organ where mechanoelectric transduction arises. We study the mechanotransduction mechanism in the Drosophila auditory system by using a laser Doppler vibrometer (LDV) and extracellular electrophysiology. We find that large and small peaks appear alternatively and that the antenna vibration is asymmetric depending on whether the pedicel and the scape are fixed. Interestingly, we find that this asymmetric vibration accompanies the alternating neural peak structure. Here, we propose a mathematical model to explain the alternating peak structure by using a model consisting of two opposing neurons that are modeled as strings. Generally, strings have tension only when they are elongated. This property allows the alternating neural peaks for asymmetric antenna motion.
Keywords
Drosophila; Johnston's organ; Mechanotransduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. C. Bennet-Clack, Nature 234, 255 (1971).   DOI
2 G. Gibson, B. Warren and I. J. Russell, JARO 11, 527 (2010)   DOI
3 R. Warren, G. Gibson and I. J. Russell, Curr. Biology 19, 485 (2009).   DOI
4 J. Howard and A. J. Hudspeth, Neuron 1, 189 (1988).   DOI
5 A. C. Crawford and R. Fettiplace, J. Physiology 364, 359, (1985).
6 J. Howard and A. J. Hudspeth, Proc. National Acad. Sci. 84, 3064, (1987).   DOI
7 I. J. Russell, M. Kossl and G. P. Richardson, Proc. Royal Soc. London B: Biological Sci. 250, 217 (1992).   DOI
8 A. J. Hudspeth et al., Proc. National Acad. Sci. 97, 11765 (2000).   DOI
9 T. Effertz et al., Nature Neurosci. 15.9, 1198 (2012).   DOI
10 J. Howard and A. J. Hudspeth, Neuron 1, 189 (1988).   DOI
11 J. T. Albert, B. Nadrowski and M. C. Gopfert, Curr. Biology 17, 1000 (2007).   DOI
12 M. C. Gopfert et al., Proc. National Acad. Sci. USA 102, 325 (2005).   DOI
13 B. Nadrowski, J. T. Albert and M. C. Gopfert., Curr. Biology 18, 1365 (2008).   DOI