• Title/Summary/Keyword: Ordinary Least Squares

Search Result 203, Processing Time 0.028 seconds

Lagged Unstable Regressor Models and Asymptotic Efficiency of the Ordinary Least Squares Estimator

  • Shin, Dong-Wan;Oh, Man-Suk
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.2
    • /
    • pp.251-259
    • /
    • 2002
  • Lagged regressor models with general stationary errors independent of the regressors are considered. The regressor process is unstable having characteristic roots on the unit circle. If the order of the lag matches the number of roots on the unit circle, the ordinary least squares estimator (OLSE) is asymptotically efficient in that it has the same limiting distribution as the generalized least squares estimator (GLSE) under the same normalization. This result extends the well-known result of Grenander and Rosenblatt (1957) for asymptotic efficiency of the OLSE in deterministic polynomial and/or trigonometric regressor models to a class of models with stochastic regressors.

Unified Non-iterative Algorithm for Principal Component Regression, Partial Least Squares and Ordinary Least Squares

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.355-366
    • /
    • 2003
  • A unified procedure for principal component regression (PCR), partial least squares (PLS) and ordinary least squares (OLS) is proposed. The process gives solutions for PCR, PLS and OLS in a unified and non-iterative way. This enables us to see the interrelationships among the three regression coefficient vectors, and it is seen that the so-called E-matrix in the solution expression plays the key role in differentiating the methods. In addition to setting out the procedure, the paper also supplies a robust numerical algorithm for its implementation, which is used to show how the procedure performs on a real world data set.

  • PDF

DETECTION OF OUTLIERS IN WEIGHTED LEAST SQUARES REGRESSION

  • Shon, Bang-Yong;Kim, Guk-Boh
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.501-512
    • /
    • 1997
  • In multiple linear regression model we have presupposed assumptions (independence normality variance homogeneity and so on) on error term. When case weights are given because of variance heterogeneity we can estimate efficiently regression parameter using weighted least squares estimator. Unfortunately this estimator is sen-sitive to outliers like ordinary least squares estimator. Thus in this paper we proposed some statistics for detection of outliers in weighted least squares regression.

FIR System Identification Method Using Collaboration Between RLS (Recursive Least Squares) and RTLS (Recursive Total Least Squares) (RLS (Recursive Least Squares)와 RTLS (Recursive Total Least Squares)의 결합을 이용한 새로운 FIR 시스템 인식 방법)

  • Lim, Jun-Seok;Pyeon, Yong-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.374-380
    • /
    • 2010
  • It is known that the problem of FIR filtering with noisy input and output data can be solved by a total least squares (TLS) estimation. It is also known that the performance of the TLS estimation is very sensitive to the ratio between the variances of the input and output noises. In this paper, we propose a convex combination algorithm between the ordinary recursive LS based TLS (RTLS) and the ordinary recursive LS (RLS). This combined algorithm is robust to the noise variance ratio and has almost the same complexity as the RTLS. Simulation results show that the proposed algorithm performs near TLS in noise variance ratio ${\gamma}{\approx}1$ and that it outperforms TLS and LS in the rage of 2 < $\gamma$ < 20. Consequently, the practical workability of the TLS method applied to noisy data has been significantly broadened.

A Channel Equalization Algorithm Using Neural Network Based Data Least Squares (뉴럴네트웍에 기반한 Data Least Squares를 사용한 채널 등화기 알고리즘)

  • Lim, Jun-Seok;Pyeon, Yong-Kuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.63-68
    • /
    • 2007
  • Using the neural network model for oriented principal component analysis (OPCA), we propose a solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. In this paper, we applied this neural network model to channel equalization. Simulations show that the neural network based DLS outperforms ordinary least squares in channel equalization problems.

Comparison between Total Least Squares and Ordinary Least Squares for Linear Relationship of Stable Water Isotopes (완전최소자승법과 보통최소자승법을 이용한 물안정동위원소의 선형관계식 비교)

  • Lee, Jeonghoon;Choi, Hye-Bin;Lee, Won Sang;Lee, Seung-Gu
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.517-523
    • /
    • 2017
  • A linear relationship between two stable water isotopes, oxygen and hydrogen, has been used to understand the water cycle as a basic tool. A slope and intercept from the linear relationship indicates what kind of physical processes occur during movement of water. Traditionally, ordinary least squares (OLS) method has been utilized for the linear relationship, but total least squares (TLS) method provides more accurate slope and intercept theoretically because isotopic compositions of both oxygen and hydrogen have uncertainties. In this work, OLS and TLS were compared with isotopic compositions of snow and snowmelt collected from the King Sejong Station, Antarctica and isotopic compositions of water vapor observed by Lee et al. (2013) in the western part of Korea. The slopes from the linear relationship of isotopic compositions of snow and snowmelt at the King Sejong Station were estimated to be 7.00 (OLS) and 7.16(TLS) and the slopes of stable water vapor isotopes were 7.75(OLS) and 7.87(TLS). There was a melting process in the snow near the King Sejong Station and the water vapor was directly transported from the ocean to the study area based on the slope calculations. There is no significant difference in two slopes to interpret the physical processes. However, it is necessary to evaluate the slope differences from the two methods for studies for example, groundwater recharge processes, using the absolute slope values.

Various Models of Fuzzy Least-Squares Linear Regression for Load Forecasting (전력수요예측을 위한 다양한 퍼지 최소자승 선형회귀 모델)

  • Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.61-67
    • /
    • 2007
  • The load forecasting has been an important part of power system Accordingly, it has been proposed various methods for the load forecasting. The load patterns of the special days is quite different than those of ordinary weekdays. It is difficult to accurately forecast the load of special days due to the insufficiency of the load patterns compared with ordinary weekdays, so we have proposed fuzzy least squares linear regression algorithm for the load forecasting. In this paper we proposed four models for fuzzy least squares linear regression. It is separated by coefficients of fuzzy least squares linear regression equation. we compared model of H1 with H4 and prove it H4 has accurately forecast better than H1.

Expressions for Shrinkage Factors of PLS Estimator

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1169-1180
    • /
    • 2006
  • Partial least squares regression (PLS) is a biased, non-least squares regression method and is an alternative to the ordinary least squares regression (OLS) when predictors are highly collinear or predictors outnumber observations. One way to understand the properties of biased regression methods is to know how the estimators shrink the OLS estimator. In this paper, we introduce an expression for the shrinkage factor of PLS and develop a new shrinkage expression, and then prove the equivalence of the two representations. We use two near-infrared (NIR) data sets to show general behavior of the shrinkage and in particular for what eigendirections PLS expands the OLS coefficients.

  • PDF

Preference Map using Weighted Regression

  • S.Y. Hwang;Jung, Su-Jin;Kim, Young-Won
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.651-659
    • /
    • 2001
  • Preference map is a widely used graphical method for the preference data set which is frequently encountered in the field of marketing research. This provides joint configuration usually in two dimensional space between "products" and their "attributes". Whereas the classical preference map adopts the ordinary least squares method in deriving map, the present article suggests the weighted least squares approach providing the better graphical display and interpretation compared to the classical one. Internet search engine data in Korea are analysed for illustration.

  • PDF

Choice of Statistical Calibration Procedures When the Standard Measurement is Also Subject to Error

  • Lee, Seung-Hoon;Yum, Bong-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.14 no.2
    • /
    • pp.63-75
    • /
    • 1985
  • This paper considers a statistical calibration problem in which the standard as wel as the nonstandard measurement is subject to error. Since the classicla approach cannot handle this situation properly, a functional relationship model with additional feature of prediction is proposed. For the analysis of the problem four different approaches-two estimation techniques (ordinary and grouping least squares) combined with two prediction methods (classical and inverse prediction)-are considered. By Monte Carlo simulation the perromance of each approach is assessed in term of the probability of concentration. The simulation results indicate that the ordinary least squares with inverse prediction is generally preferred in interpolation while the grouping least squares with classical prediction turns out to be better in extrapolation.

  • PDF