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Lagged Unstable Regressor Models and Asymptotic
Efficiency of the Ordinary Least Squares Estimator!

Dong-Wan Shin! and Man-Suk Oh!

ABSTRACT

Lagged regressor models with general stationary errors independent of
the regressors are considered. The regressor process is unstable having char-
acteristic roots on the unit circle. If the order of the lag matches the num-
ber of roots on the unit circle, the ordinary least squares estimator (OLSE)
is asymptotically efficient in that it has the same limiting distribution as
the generalized least squares estimator (GLSE) under the same normaliza-
tion. This result extends the well-known result of Grenander and Rosenblatt
(1957) for asymptotic efficiency of the OLSE in deterministic polynomial
and/or trigonometric regressor models to a class of models with stochastic
regressors.
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1. Introduction

Consider a time series regression model

Yy =5zt + ...+ BpTtprrtz, t=1,...,n, (1)

where {y;, t =1, ..., n} is a set of observations, z; is a sequence of unstable time
series such as I(p) processes, seasonally integrated processes, polynomial time
trends, or trigonometric time trends. The process z; is a sequence of unobservable
stationary errors independent of z;, and 8 = (B1, ..., Bp)’ is a p x 1 vector of
unknown parameters of our interest. The process z; is an unstable autoregression
¢(B)zy = uy, where ¢(B) is of the form

L
#(B) = (1 - B)*(1 + B)" [[(1 — 2B cos 6, + B*)*, (2)
£=1
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for some nonnegative integers a, b, dy, and real numbers 8y, £ =1, ..., L, B is the
back-shift operator such that Bz; = z;—; and the process u; is either a zero-mean
stationary process or zero. Note that all the roots of ¢(B) lie on the unit circle.

Our object is to prove asymptotic efficiency of the OLSE, Bo = (X'X)"1X'Y,
in the sense that it has the same limiting distribution as the GLSE, BG =
(X'T-1X)~1X'T~'Y, under the same normalization, where X = (Xi|...|X,), X;
= (T1—it1s > Tn-i+1)t = 1,...,0, Y = (y1, ..., ¥n), T = var(Z), and
Z = (21, ey Zn)’.

For a general linear model Y = X3+ Z, it is well known that a necessary and
sufficient condition for numerical equivalence of Bo and BG isT'X = XC for some
constant matrix C. See Zyskind (1967), Kruskal (1968), and the review paper
by Puntanen and Styan (1989). Asymptotic efficiency of the OLSE was studied
in some time series literature such as Grenander and Rosenblatt (1957) for de-
terministic time trend regressor models, Kramer (1986) and Phillips and Park
(1988) for regression with integrated regressors, and Kramer and Hassler (1998)
for fractionally integrated regressor models. Especially, Shin and Oh (2002) con-
sidered the model (1) with p = 1 and showed that the OLSE is asymptotically
efficient if one of {a,b,d1,...,dL} is strictly greater than all the other values.

In the remainder of this paper, conditions and results are stated in Section 2
and proofs of theoretical results are provided in the Appendix.

2. Conditions and Results

Let v, = E(z92) and let

f(6) = (2m)7t Z v, exp(—1Bh), 12 = —1

h=—o0

be the spectral density of z;. Let A,,(M) denote the minimum eigenvalue of a
symmetric matrix M. For an m x 1 vector a = (a1, ..., am)’, let ||a|| denote the

Euclidean norm such that [|a||2 = S_7, a?. We state conditions required for our

1=1""
analysis.

Al. ¢(B) is a p-th order polynomial having all roots on the unit circle and is of
the form (2) for some integers a, b, dy > 0,£=1,...,L,p= a+b+}:f:1 dp >
1, and 8y’s in (0, ).

A2. The process u; = ¢(B)x; is either zero or a zero mean stationary process
having positive variance. Let v; = (u4, 2¢) if u; is a stationary random pro-
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cess and let v; = 2; if u; = 0. The process v; satisfies the invariance principle
that n~1/2 ?:1] vt N W (s) for some Brownian motion W (s) with positive
definite variance matrix, where 9 denotes convergence in distribution and

[ns] is the integer part of ns,0 < s<1.

A3. There is a sequence of square matrices A, such that n =14’ ' X'X A!
converges in distribution to an almost surely (a.s.) positive definite and
possibly random matrix.

Ad. inf, An(T) > 0.
A5. 51 o |vn| < oo. If uy is a random process, Y peq | E(uoup)| < oco.

A6. For each 6 associated with the characteristic roots of ¢(B), we have f(6) #

0 and
o0
Z Yh eLBh
h=i

n 2

D

i=1

= o(n).

A7. {z;} and {2;} are independent.

The first condition Al states that every element of z; is unstable. Special
simple cases of regressors which satisfy Al and are frequently encountered in
practice are I(d), Ip(1) and I(1) x Ip(1) defined by (1—B)%z; = ug, (1-BP)z; =
ug, (1 — B)(1 — BP)z; = uy, respectively, where d and D > 1 are integers.

Note that each element of z; can be not only a random process but also a
deterministic general trigonometric function which is a linear combination of {#/,
i=0,...,a—1} {(-1)%, j =0, ..., b—1}, {t? cos(tfy), ’ sin(td;), j = O,
co,dg—1}, £ =1, ..., L, for some integers a,b,d; and real numbers ¢, € (0,
7). In this case, uy = ¢(B)z; = 0 for some ¢(B) of the form (2) and Al is also
satisfied. Therefore, the results that will be established below are valid for the
cases in which the set of regressors contains general trigonometric functions as
well as random processes satisfying Al.

The other conditions A2-A7 are very mild and are satisfied by general sta-
tionary time series {u;, 2;} as discussed in Shin and Oh (2002).

Lemma 2.1. Consider model (1). Under A1-A7, for some n X p matriz V and
p X p nonsingular matriz Q,

I'X=XQFQ'+R (3)
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and
IRI/IX = op(1), (4)

where

F = diag2nf(61), ..., 2nf(6p)],
and {exp(:01), ..., exp(tfp)} are the characteristic roots of ¢(B).

The expressions (3)—(4) state that ['X is asymptotically in the column space of
X and X'T~! = C'~1 X’ for a nonsingular matrix C = QFQ~!. Therefore,

BG — (XIP—IX)—I(XIF—ly) o~ (Cl—leX)-—l(Cl—lxly) — (XIX)—IXIY — BO

and hence the OLSE is asymptotically efficient. The matrix @ is defined in the
proof of Lemma 2.1 and its explicit expression is found in Chan and Wei (1988).

Theorem 2.1. Consider model (1). If A1-A7 hold, then the OLSE and the
GLSE for the regression (1) have the same nontrivial limiting distribution under
the same normalization.

Remark 1. Suppose that z; is I(d) for some integer d > 1, i.e. Az, = uy,
where A =1 — B is the difference operator. Consider the regression

Yyt =Pzt + ...+ BpTe—pi1 + 2
with p > 1. Note that this model is equivalent to

yr =y + elAzr, + ...+ ’)’pAp_lzL't + 2

because there is one-to-one correspondence between (zy, ..., Zt—p11) and (zi,
Azy,...,AP71z;)'. Now, according to Theorem 2.1, if p = d then the OLSE of
B = (b1, ..., Bp) and hence of v = (y1, ..., 7p)" are asymptotically efficient.

On the other hand, if p > d, the OLSE is not asymptotically efficient because
there are lack of asymptotic efficiencies for the OLSE of ; for d < j < p, which
correspond to stationary components Alz;, d < j < p.

Remark 2. According to Theorem 2.1, when z; is a seasonally integrated process
(]. - BD).’Et = Ug,
the OLSE for the regression model

yr = P12¢ + Poxi—1 + ... + BpTi—py1 + 2
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is asymptotically eflicient under the other regularity conditions of A2-A7. On
the other hand, Shin and Oh (2000) showed that, for model y; = B1z¢ + 2, the
OLSE is not asymptotically as efficient as the GLSE. Note that there is one-to-one
correspondence between (zy, ..., £;—p+1) and (zf,, ..., ““7)-1,t)’ where

1
Zt—g cos ( _771'B] e, 1=0,..., 71,

Tiyrs = E sin ( j7r BJ Y, i=1,..., 7,

are the Fourier coefficients of {zt—py1,Zt-py2,--.,%t}, 7 = [D/2], and r, =
[(D - 1)/2]. For the quarterly case of D = 4,

oy = (1+ B + B% + B®)=y, 2}, = —(1 — B?)Buy,
zy = —(1 - B+ B% - B%zy, 25, = (1 - BY),

are the regressors considered by Hylleberg et al. (1990) and Shin and So (2000)
in constructing tests for seasonal unit roots. Now, regression (1) is equivalent to

Yt = MoToy + My + ... + TD1Tp 14 + 2t (5)

This type of regression is encountered in the fields of seasonal unit root tests and
seasonal cointegration, see Hylleberg et al. (1990), Engle et al. (1993), and Shin
and So (2000). According to Theorem 2.1, the OLSE 7o of 7 = (ng, ..., 7p-1)’
in (5) is asymptotically efficient.

Remark 3. Consider z; in (1 — BP)(1 — B)z; = u;. By Theorem 2.1, the
OLSE in the regression y; = f1z;+. ..+ Bp+1Zi—p + 2 is asymptotically efficient
under the other regularity conditions. Also, according to Shin and Oh (2002), the
OLSE in the regression model y; = B1z: + 2; is asymptotically efficient because
the multiplicity of the unit root 1 is two and is greater than multiplicities of any
other roots, which are all one.

Remark 4. Theorem 2.1 can be applied to give the result of Grenander and
Rosenblatt (1957, Section 7.5), which states asymptotic efficiency of the OLSE
in the trigonometric regressions consisting of regressors

zge = (1,8, ... ,tdo—l]l, T = [(—l)t, (—-l)tt, - (_1)ttdr—1]/,

xg, = [cos(tby), t cos(tby), . .. et cos(tfy), sin(ty), t sin(tby), . . . el sin(t6)]',
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£=1,2,...,r—1,withd; >0and0=60; <6, <...<8,_1 <6, =m. Let

T

Ty = th‘_l{cos(té’g) + sin(t6,)}. (6)
£=0

Note that, for any nonnegative integer d, (1—B)%¢"! = 0, (1+B)4(~1){t¢"! = 0,
and (1 — 2B cos 8 + B2)4t% 1 cos(t0) = 0. Hence, in general, we have

r—1
(1-B)%(1+ B)* H(l —2Bcosfp + B?)%z, =0
=1

and z; satisfies Al. We now have p = dy + 2 Zz;i dy + d.. Also, we can easily
show that there is one-to-one correspondence between (¢, z¢—1, ..., :—p) and
(z&;, ..., z¥)'. Therefore, the regression considered by Grenander and Rosen-
blatt (1957) is equivalent to regression (1) with z; in (6). According to Theorem
2.1, under the other regularity conditions of A2-A7, the OLSE is asymptoti-
cally as efficient as the GLSE, yielding the result of Grenander and Rosenblatt
(1957, Section 7.5). Therefore, Theorem 2.1 extends the result of Grenander and
Rosenblatt (1957) to a class of models with stochastic regressors.

Appendix : Proofs

Proof of Lemma 2.1. Let

w()=01-B)u,j=1,...,a, (A.1)
v(j)) =1 +B)u,j=1,...,b, (A.2)
zer(§) = (1 — 2BcosOp + BY) Juy,j =1,...,dp, 0 =1,..., L. (A.3)
Let
wy = [ug(1), ..., w(a), ve(l), ..., va(b),z1:(1), 2141 (1), - .-,
z1¢(d1), 214-1(d1), - - - xre(1), 2L 11 (1), - .., zre(dL), Tpe—1(dp)].

By (3.2), (3.1.3), (3.2.2), (3.3.2) of Chan and Wei (1988), there is a nonsingular
matrix @ such that
(zEt, Tpa1y ¢+ vy xt_p+1)Q = Wt. (A4)
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The fact that the regression order p exactly matches the number of roots on the
unit circle is essential for nonsingularity of Q. Let U(j) = [u1(j), --., un(4)]’-
Define similarly V(j) and X,() from v;(j) and z4(j) in (A.2)—(A.3). Let

W =[UM|U@)...| Xp(dr)].

Then, from (A.4), X = WQ™!. Since each element of u;(5), v+(j), and z4(j) has
only one root on the unit circle, Proposition 1 and Proposition 2 of Shin and Oh
(2002) are applicable to give us

TU(j) = 2nf(0)U(5) + Ru(3), (A.5)
TV (§) = 2n f(m)V (5) + Ru(4), (A.6)
TXy(5) = 27f(00)Xe(5) + Rae(5)

j=1,2,..., for some n-vectors R,(7), R,(j), Rze(j) such that
IR (DI/NT G = 0p(1), IR (DI/IIV ()]l = 0p(1), (A.8)
1 Rae (/11 Xe(5)]] = op(1).
Combining (A.5)-(A.7), we get
I'W =WF+[Ru(1)| ...| Rzr(dp)]
and
I'X=TWQ!=XQFQ ' +R,

where R = [Ry(1)| ...| Rer(dr))Q™'. Noting that [|X|| is of the same order
as the maximum ordered one among {||U(1)||, .., | Xr(dr)||}, we get (4) from
(A.8). O

Proof of Theorem 2.1. From (3) of Lemma 2.1 and nonsingularity of K =
QFQ™!, we have
r-'x=XK1-17'RK"L

We thus have

XT'X=X'XK!'!-XT'RK™!
and

ZT X =2'XK'-ZT'RK L.

Now, according to (4) of Lemma 2.1, the last terms X'T"'RK~! and ZT-'RK !
are negligible compared with the first terms X’ XK ! and Z'X K !, respectively.



258 Dong-Wan Shin and Man-Suk Oh

Therefore, the arguments of Theorem 2 and Lemma 3 of Shin and Oh (2002) are
applicable to show that

[nl/ZA;l(BG _ B)]l — n—l/QZIP—lX(XII-\—lX)-—lAn
has the same limiting distribution as

D24 (Bo — B) =n~2Z' XK HX'XKY)"1 A,
— n1/2leA;1(A;1X/XA7—L-1)—1

and the result follows. d
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