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Abstract

A unified procedure for principal component regression (PCR), partial 
least squares (PLS) and ordinary least squares (OLS) is proposed. The 
process gives solutions for PCR, PLS and OLS in a unified and 
non-iterative way. This enables us to see the interrelationships among the 
three regression coefficient vectors, and it is seen that the so-called 
E-matrix in the solution expression plays the key role in differentiating 
the methods. In addition to setting out the procedure, the paper also 
supplies a robust numerical algorithm for its implementation, which is 
used to show how the procedure performs on a real world data set.

Keywords: Krylov matrix; Partial least squares; Principal component 
regression; Unified algorithm

1. Introduction

Regression analysis is one of the most common ways for finding linear 

relationships between measurables and variables. We consider the general linear 

regression model

y = β01+Xβ + ε ,

where y  is a n×1  vector of the dependent variable, β 0  and β '= (β1,…,β p )  are 

the unknown parameters of the model, 1  is a n×1  vector of ones, X  is the n×p  
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matrix of the independent variables, and ε  is a n×1  error vector normally 

distributed with mean zero and covariance matrix σ
2I p . We shall also assume that 

the rank of X  is r .

A serious problem arises with ordinary least squares (OLS) when the 

independent variables that comprises X  are not independent but collinear. In such 

cases the model parameters are more sensitive to noise, causing a loss of full 

rank. Principal component regression (PCR) (Massy 1965) and partial least squares 

(PLS) (Wold et. al. 1984) circumvent the collinearity problem by using orthogonal 

latent variables. 

One of the problems of PLS is that it is always given as an iterative algorithm 

in the literature and hence it is difficult to understand its structure and properties. 

Some efforts have been made to figure out its relationship with PCR and OLS 

(see, for example, Stone and Brooks 1990, Frank and Friedman 1993, Lang et al. 

1998, Kim 2003). In this paper, we present an algorithm that provides solutions for 

PCR, PLS and OLS in a unified and non-iterative way and examine the structure 

of the solutions.

2. Unified Approach to PCR, PLS and OLS

A unified approach to PCR, PLS and OLS, called Cyclic Subspace Regression 

(CSR), was given by Lang et al. (1998). A numerically robust version of this 

algorithm was given by Brenchley et al. (1998). 

A brief outline of the CSR procedure can be written as follows.

1. Autoscale X  and y .

2. Singular value decomposition of X ; i.e., X = U DV'  

3. Let k  and l  be fixed integers satisfying 1≤k≤l≤r .

4. P l= UU'=( u 1,…,u l ) ( u 1,…,u l )'  

5. X 1
l = X  and y

1
l = P l y   

6. For i=1,…,k :

   w il= X
i
l' y

i
l / ||X

i
l' y

i
l ||

   t il= X
i
l'w

i
l / ||X

i
l'w

i
l ||

   X i+1
l = X i

l- t
i
l t
i
l'X

i
l
 

   y i+1l = y il- t
i
l t
i
l' y

i
l
  

7. Create matrices W k
l = ( w

1
l,…,w

k
l ), T

k
l = ( t

1
l,…, t

k
l )  and
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  X k
l = T

k
l T

k
l 'XW

k
l W

k
l ' .

8. b kl =(X
k
l )
+y  

Solutions obtained in step 8 correspond to PCR when l= k , PLS when l= r , 

and OLS when l= k= r . According to Kalivas (1999) the regression vectors for 

CSR can be expressed as

b= ∑
l

i=1 (
u i' y

k
l

δ i ) v i ,
where y kl  are the values calculated from step 6, based on l  eigenvectors and k  

components. The CSR algorithm provides an extra loop in the Wold's PLS algorithm, 

modifying X  and y , so the number of eigenvectors can be varied. 

Although the above algorithm is a single method that incorporates all of the 

features of PCR, PLS and OLS, it is not easy to understand how the solutions for 

PCR, PLS and OLS are obtained.

We will now show another unified approach to PCR, PLS and OLS. Like CSR, 

this is a unified procedure which reveals the relationships and differences among 

the three solutions, though in a different way. Before explaining this we provide 

the following definition and proposition.

Definition 1. (Krylov matrix) Given matrices X ∈ℝ
n×p  and y∈ℝ

n , the Krylov 

matrix K p∈ℝ
p×p  for the pair (X'X ,X'y )  is defined by 

K p=[X'y, X'XX'y, (X'X )
2X'y, …, (X'X ) p-1X'y ]

(see Golub and Van Loan 1996).

Proposition 1. The column space of the weighting matrix W k∈ℝ
p×k  obtained 

from Wold's PLS algorithm and the column space of the reduced Krylov matrix 

K k∈ℝ
p×k  coincide. That is, the columns of W k

 and the columns of K k
 span the 

same subspace.

Proof: The proof can be found in Helland (1988).  ■

An alternative expression of the above reduced Krylov matrix K k
 is

K k = (V DU'y, V D
3U'y, …, V D 2k-1U'y ),              (1)
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which can be easily verified by using X= U DV', the singular value 

decomposition (SVD) of X . (Matrices U , D  and V  will be defined soon.)

The expression in proposition 2 below gives a unified and non-iterative solution 

of the regression vectors for OLS, PCR and PLS. 

Proposition 2. Let the SVD of X ∈ℝ
n×p  be written as X = U DV', where 

U ∈ℝ
n×r  represents the matrix of eigenvectors for X X', V ∈ℝ

p×r  symbolizes 

the matrix of basis eigenvectors for X'X , D ∈ℝ
r×r  denotes the diagonal matrix 

of singular values (δ i), and r  is the rank of X . Then the regression vectors for 

OLS, PCR and PLS are given by 

b= V φ , φ = D
-1EU'y ,

where matrix E ∈ℝ
r×r  is 

   E = I r  for OLS;

   E=( )I k 0

0 0
 for PCR;

   E = Q k ( Q k'Q k )
- 1Q k'  with Q k= ( D

2U'y, D
4U'y, …, D

2kU 'y )  for 

PLS.

Here I a  denotes an identity matrix of size a×a  and k  is the number of 

selected components for PCR and PLS.

Proof: It can be shown that 

b OLS= V D
-1U'y  

b PCR= V k D
-1
k U k'y

b PLS= V D
-1E kU 'y

where V = ( v 1, v 2,…,v r ), D = diag (δ 1,δ 2,…,δ r )  and 

U =( u 1, u 2,…,u r ); V k= ( v 1, v 2,…,v k ),  D k= diag (δ 1,δ 2,…,δ k )  and 

U k=( u 1, u 2,…,u k ); E k= Q k ( Q k'Q k )
- 1Q k'  with Q k=

( D 2U'y, D 4U'y, …, D 2kU 'y )  (for details, see Kim 2003). Then the result 
follows immediately.  ■

The main advantage of this expression is that the regression vector is 

expressed as a linear combination of the eigenvectors v i  and that we can see 

how the weights differ in OLS, PCR and PLS by comparing the vector φ . It also 

shows that the difference in φ  for the three methods depends on the matrix E . 
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We note that E = Q k ( Q k'Q k )
- 1Q k'  is a symmetric idempotent matrix and 

tr ( E )= k . We also note that tr ( E )= k  for PCR and tr ( E )= r  for OLS, 

where tr  denotes the trace of a given matrix. From now on we will call the E  

matrix E -matrix. 

The summarization of this procedure is as follows. 

Step 1. Autoscale X  and y :

  X ← X , y  ← y  

Step 2. SVD of X :

  U DV'= X

Step 3. Compute E -matrix:

  For OLS, set

    E = I r

  For PCR with the first k  components, set

    E=( )I k 0

0 0

  For PLS with the first k  components, set

      E = Q k ( Q k'Q k )
- 1Q k'  with Q k=( D

2U'y, D 4U'y, …, D 2kU 'y )  

Step 4. Compute φ :

  φ = D -1EU'y
Step 5. Compute regression coefficient vector:

  b= V φ

Thus once φ = (φ1,φ2,…,φr )'  is obtained for each method, the regression 

vector is written as

b = V φ

= φ1v 1+φ2v 2+…+φrv r

which is a linear combination of eigenvectors v i  and each φ i  is a corresponding 

weight. Also the investigation on the values of E  helps us to see the differences of 

φ  among the methods, since vector φ  depends on E . 

The algebraic expression of each regression vector can be written as follows.
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φ OLS= D
-1U'y=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳

1
δ1
u 1'y

⋯
1
δ r
u r'y

φ PCR= D
-1
k U k'y=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳

1
δ 1
u 1'y

⋯
1
δ k
u k'y

φ PLS= D
-1E kU 'y=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳

1
δ1
∑
r

j=1
e 1j u j'y

⋯
1
δ r
∑
r

j=1
e rj u j'y

where δ i  is the i th diagonal element of D , e ij  is the ( i, j)th element of E , and 

u i  is the i th vector of U . 

Thus we have

                  b OLS= V φ OLS= ∑
r

i=1 (
u i'y

δ i )v i  
                  b PCR= V φ PCR= ∑

k

i=1 (
u i'y

δ i )v i                        (2)
                  b PLS= V φ PLS= ∑

r

i=1 (
1
δ i
∑
r

j=1
e ij u j'y )v i

Therefore the regression vector for the three methods can be described as 

follows:

1. An OLS coefficient vector requires summation of all r  weighted v i  

eigenvectors, where each weight is φ i=
u i'y

δ i
.

2. A PCR coefficient vector is based on summation of the first k  weighted v i  

eigenvectors, where each weight is the same as that of OLS.

3. A PLS coefficient vector requires summation of all r  weighted v i  

eigenvectors, where each weight is φ i=
1
δ i
∑
r

j=1
e ij u j'y .

An alternative form of Equation 2 is 

                   b OLS= ∑
r

i=1
γ i
v i
δ i
 where γ i= u j'y



Unified Non-iterative Algorithm for Principal Component Regression, 

Partial Least Squares and Ordinary Least Squares
361

                   b PCR= ∑
k

i=1
γ i
v i
δ i
 where γ i= u j'y

b PLS= ∑
r

i=1
γ i
v i
δ i
 where γ i= ∑

r

j=1
e ij u j'y

Here each γ i  represents the above φ i  weight with the singular value 

information removed. 

Thus by investigating φ i  or γ i  weights, further information can be provided 

on when PCR and PLS produce the same or different results and why. Another 

way to see the interrelationships among the three regression vectors are as 

follows.

1. If k= r , then b PCR  becomes b OLS . 

2. If e ij={ 1, ∀ i= j0, ∀ i /= j
, then b PLS  becomes b OLS . 

3. If e ij= { 1, for i= j, i, j=1,…,k (k < r )0, otherwise
, then b PLS  becomes b PCR .

Since the solutions for the three regression methods depend on the e ij  values, 

we can see the differences among OLS, PCR and PLS better by investigating the 

e ij  values.

3. Computational Aspect

The algorithm in the previous section is theoretically valid but numerically 

inappropriate, and hence should not be implemented as described. The columns of 

Q k
 consists of power series and hence computations of Q k'Q k

 and its inverse 

have a serious ill-conditioning problem. One way to tackle this problem is to 

orthogonalize the columns of Q k
 by the Gram-Schmidt procedure. Although this 

reduces the computational error, the ill-conditioning problem still remains.

This can be solved as follows. Consider 

Q k= ( D
2U'y, D

4U'y, …, D
2kU 'y )

and 

K k= (V DU'y, V D
3U'y, …, V D

2k-1U'y )

of Definition 1. It can be easily verified that K k= VD
- 1Q k

, and hence we have 

Q k= DV'K k
. Using Wold's algorithm we can obtain matrix W k

 that is 
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numerically stable and spans the same subspace as K k
 does by proposition 1. We 

now set R k= DV'W k
. Then we can obtain numerically robust result by using 

R k
 instead of Q k

. 

To further increase the numerical accuracy, we perform a SVD of R k
, i.e., 

R k= UR DRVR'  and substitute this into E = R k ( R k'R k )
- 1R k'  to obtain 

E = URUR'  since VR  is nonsingular. The latter E -matrix gives numerically 

more accurate result than the former E -matrix. 

Therefore for computational purposes, Step 3 of the algorithm in Section 2 

should be replaced by the following procedure.

Step 3. Compute E -matrix:

  For OLS, set

    E = I r

  For PCR with the first k  components, set

    E=( )I k 0

0 0

  For PLS with the first k  components, set

    For i=1,…,k ,

      w i= X i-1'y i-1/ ||X i-1'y i-1||

      t i= X i-1w i / ||X i-1w i ||

      X i= ( I n- t i t i')X i-1

      y i= ( I n- t i t i')y i-1
    end for

    R k= DV'W k
 with W k= ( w 1,…,w k )

    UR DRVR'= R k

    E = URUR'

4. Example

To illustrate how our algorithm performs on real world data, we use data from 

Fearn (1983). They are the result of an experiment performed to calibrate a near 

infrared (NIR) reflectance instrument for the measurement of protein content in 

ground wheat samples. The protein content measurements were made by the 
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standard Kjeldahl method, and the six values x 1, x 2, …, x 6  are measurements of 

the reflectance of NIR radiation by the wheat samples at six different wavelengths 

in the range 1680-2310 nm . The number of observations is 24. The aim of the 

calibration is to find a good regression model which predicts protein content.

In these data, p= 6  and r= 6  and it can be shown that we have an optimal 

model when the number of components k= 4  by the PRESS criterion using 

leave-one-out cross-validation for both PCR and PLS. 

The E -matrix of φ = D -1EU'y  for k= 4  is as follows.

1. For b OLS , E = I 6 . That is, e 11= e 22= e 33= e 44= e 55= e 66= 1  and the 

rest of the elements equal 0 . 

2. For b PCR , E=( )I 4 0

0 0
. That is, e 11= e 22= e 33= e 44= 1  and the 

remaining diagonal elements ( e 55, e 66 ) plus all off-diagonal elements equal 

0 . 

3. For b PLS ,

E=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳

1 8.816E-18 -7.33E-16 1.053E-14 3.286E-13 2.88E-13
8.816E-18 1 -1.334E-8 1.914E-7 5.9774E-6 5.2346E-6
-7.33E-16 -1.334E-8 0.9999972 0.0000404 0.0012638 0.0011029
1.053E-14 1.914E-7 0.0000404 0.99942 -0.018158 -0.01581
3.286E-13 5.9774E-6 0.0012638 -0.018158 0.0003315 0.0002886
2.88E-13 5.2346E-6 0.0011029 -0.01581 0.0002886 0.0002513

.

That is, elements e 11, e 22, e 33, e 44  are equal to 1  or slightly smaller than 1  

and the remaining diagonal elements e 55  and e 66  become slightly bigger than 0  

in such a way that the sum of the diagonal elements is 4  (remember that 

∑ e ii= k  for PLS); the remaining elements are small values (positive or 

negative). 

Thus for OLS, the diagonal elements are all 1  and all the remaining elements 

are 0 . Since k= 4 , PCR has elements e 11, e 22, e 33, e 44  which equal 1  and all 

the remaining elements are 0 , and PLS has elements e 11, e 22, e 33, e 44  which 

equal 1  or slightly smaller values while the remaining elements are 0  or small 

nonzero values.

It can be easily shown that the general form of the weight vector φ  for this 

example is given by
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φ =

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳

φ1
φ2
⋯
⋯
φ6

=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

1/δ 1 (e 11u 1'y+ e 12u 2'y+ e 13u 3'y+e 14u 4' y+ e 15u 5'y+ e 16u 6'y )

1/δ 2 (e 21u 1'y+ e 22u 2'y+ e 23u 3'y+e 24u 4' y+ e 25u 5'y+ e 26u 6'y )
⋯
⋯

1/δ 6 (e 61u 1'y+ e 62u 2'y+ e 63u 3'y+e 64u 4' y+ e 65u 5'y+ e 66u 6'y )

.

Hence we have

φ OLS=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

1/δ1 ( u 1'y )

1/δ 2 ( u 2'y )

1/δ 3 ( u 3'y )

1/δ 4 ( u 4'y )

1/δ 5 ( u 5'y )

1/δ 6 ( u 6'y )

=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

0.1914298
-1.28772
5.5857538
1.0500725
-2.277065
-3.696978

φ PCR=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

1/δ1 ( u 1'y )

1/δ 2 ( u 2'y )

1/δ 3 ( u 3'y )

1/δ 4 ( u 4'y )

0
0

=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

0.1914298
-1.28772
5.5857538
1.0500725

0
0

φ PLS=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

1/δ1(e 11u 1'y+e 12u 2'y+e 13u 3'y+e 14u 4'y+e 15u 5'y+e 16u 6'y )

1/δ2 (e 21u 1'y+e 22u 2'y+e 23u 3'y+e 24u 4'y+e 25u 5'y+e 26u 6'y )
…
…
…

1/δ6 (e 61u 1'y+e 62u 2'y+e 63u 3'y+e 64u 4'y+e 65u 5'y+e 66u 6'y )

=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳

0.1914298
-1.287722
5.5850863
1.061922
-0.077078
-0.082587

    (Each e ij  is defined as the ( i, j)th element of E  for PLS.)

Now it becomes clearer when φ PCR  and φ PLS  differ. The reason why the 

first element value of both vectors is identical is that e 11= 1  and all the 

remaining elements in that row are practically 0  for φ PLS . Similar statement can 

be made for the second element value of both vectors. The third and fourth 

elements become slightly different in the two methods since e 33  and e 44  for 

φ PLS  become slightly smaller than 1  and the remaining elements in each row 

are not all equal to 0 . The difference in the fifth or sixth element in the two 

methods is due to the fact that e 55  and e 66  are all zeros for φ PCR  and are 

neither 0  nor the remaining elements in each row equal 0  for φ PLS .
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Thus the smaller the values e 11, e 22, e 33, e 44  are compared to 1  and the 

further from 0  the remaining element values are, the greater the difference in φ  

values for PCR and PLS.

Now each regression vector is determined by b= V φ .

b OLS= V φ OLS= ∑
6

i=1
φ i(OLS ) v i=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

0.6577155
0.0333157
5.0247563
-5.181638
0.370844
-0.426699

b PCR= V φ PCR= ∑
4

i=1
φ i(PCR) v i=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

-0.755196
3.0947336
2.6913879
-3.907986
0.4373464
-1.06924

b PLS= V φ PLS= ∑
6

i=1
φ i(PLS ) v i=

ꀌ

ꀘ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

ꀍ

ꀙ

︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳︳

-0.730327
3.0147931
2.7652155
-3.928654
0.4354395
-1.06574

Each regression vector b  is obtained as a linear combination of eigenvectors 

v i  using φ  as weights. Weights φ  are a function of singular values, left 

singular vectors, dependent variable vector, and e ij  values. In forming regression 

vector b , OLS uses all 6 eigenvectors with appropriate weights, PCR uses the 

first 4 eigenvectors with appropriate weights, and PLS uses all 6 eigenvectors 

with appropriate weights. 

5. Conclusions

In this paper, a unified procedure for OLS, PCR and PLS was presented. The 

process gives solutions for OLS, PCR and PLS and possibly other intermediate 

regression methods in a unified and basically non-iterative way. This unified 

solution consists of weighted linear combinations of the eigenvectors of X'X , 

provides concise matrix expressions, and makes it easy to see the differences 

between the solutions. The difference is determined by the so-called E -matrix, 

and it has been illustrated on how the E -matrix makes differences among the 

three solutions in the data set discussed. In addition, it brings an implication that 
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we may be able to obtain other and hopefully better biased estimators than PCR 

or PLS by choosing appropriate e ij  values. That could be another research 

project. 
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