• 제목/요약/키워드: Ordinal categorical data

검색결과 13건 처리시간 0.019초

MARS Modeling for Ordinal Categorical Response Data: A Case Study

  • Kim, Ji-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.711-720
    • /
    • 2000
  • A case study of modeling ordinal categorical response data with the MARS method is done. The study is to analyze the effect of some personal characteristics and socioeconomic status on the teenage marijuana use. The MARS method gave a new insight into the data set.

  • PDF

범주형 반복측정자료를 위한 일반화 추정방정식의 소표본 특성 (Small Sample Characteristics of Generalized Estimating Equations for Categorical Repeated Measurements)

  • 김동욱;김재직
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.297-310
    • /
    • 2002
  • Liang과 Zeger는 이산형 혹은 연속형 반복측정자료를 분석하기 위한 일반화 추정방정식 (GEE)을 제안하였다 GEE모형은 범주형 반복측정자료의 모형으로 확장될 수 있으며, 이 GEE추정량은 대표본인 경우 다변량 정규분포를 따른다. 그러나 GEE는 대표본근사이론에 기초한다. 본 논문에서는 소표본인 경우 반복 측정된 순서자료에 대한 GEE추정량의 성질을 연구한다. 우리는 두가지 방법을 사용하여 두그룹의 반복 측정된 순서자료를 생성하며 모의실험을 통하여 소표본인 경우 여러 개 범주를 갖는 순서반응 자료에 대하여 GEE추정량의 1종 오류율, 검정력, 상대효율, 두 그룹의 표본크기가 다를 경우 효과, 그리고 분산 추정량의 성질등을 연구한다.

다범주 순서형 품질특성을 갖는 제품의 최적 공정조건 결정에 관한 연구 (Optimal Process Condition for Products with Multi-Categorical Ordinal Quality Characteristic)

  • 김상철;윤원영;전영록
    • 품질경영학회지
    • /
    • 제32권3호
    • /
    • pp.109-125
    • /
    • 2004
  • This paper deals with an optimal process control problem in production of hull structural steel plate with high defective rate. The main quality characteristic(dependent variable) is the internal quality(defect) of plates and is dependent on process parameters(independent variables). The dependent variable(quality characteristics) has three categorical ordinal data and there are 35 independent variables(29 continuous variables and 6 categorical variables). In this paper, we determine the main factors and to develop the mathematical model between internal quality predicted probabilities and the main factors. Secondly, we find out the optimal process condition of main factors through analysis of variance(ANOVA) using simulation. We consider three models to obtain the main factors and the optimal process condition: linear, quadratic, error models.

Nonparametric Procedure for Identifying the Minimum Effective Dose with Ordinal Response Data

  • Kang, Jongsook;Kim, Dongjae
    • Communications for Statistical Applications and Methods
    • /
    • 제11권3호
    • /
    • pp.597-607
    • /
    • 2004
  • The primary interest of drug development studies is identifying the lowest dose level producing a desirable effect over that of the zero-dose control, which is referred as the minimum effective dose (MED). In this paper, we suggest a nonparametric procedure for identifying the MED with binary or ordered categorical response data. Proposed test and Williams' test are compared by Monte Carlo simulation study and discussed.

A modification of McFadden's R2 for binary and ordinal response models

  • Ejike R. Ugba;Jan Gertheiss
    • Communications for Statistical Applications and Methods
    • /
    • 제30권1호
    • /
    • pp.49-63
    • /
    • 2023
  • A lot of studies on the summary measures of predictive strength of categorical response models consider the likelihood ratio index (LRI), also known as the McFadden-R2, a better option than many other measures. We propose a simple modification of the LRI that adjusts for the effect of the number of response categories on the measure and that also rescales its values, mimicking an underlying latent measure. The modified measure is applicable to both binary and ordinal response models fitted by maximum likelihood. Results from simulation studies and a real data example on the olfactory perception of boar taint show that the proposed measure outperforms most of the widely used goodness-of-fit measures for binary and ordinal models. The proposed R2 interestingly proves quite invariant to an increasing number of response categories of an ordinal model.

로짓모형을 이용한 통신 서비스품질 평가방법 (Evaluation Method of Quality of Service in Telecommunications Using Logit Model)

  • 조재균;안혜숙
    • 산업공학
    • /
    • 제15권2호
    • /
    • pp.209-217
    • /
    • 2002
  • Quality of Service(QoS) in the telecommunications can be evaluated by analyzing the opinion data which result from the surveyed opinions of respondents and quantify subjective satisfaction on the QoS from the customers' viewpoints. For analyzing the opinion data, MOS(mean opinion score) method and Cumulative Probability Curve method are often used. The methods are based on the scoring method, and therefore, have the intrinsic deficiency due to the assignment of arbitrary scores. In this paper, we propose an analysis method of the opinion data using logit models which can be used to analyze the ordinal categorical data without assigning arbitrary scores to customers' opinion, and develop an analysis procedure considering the usage of procedures provided by SAS(Statistical Analysis System) statistical package. By the proposed method, we can estimate the relationship between customer satisfaction and network performance parameters, and provide guidelines for network planning. In addition, the proposed method is compared with Cumulative Probability Curve method with respect to prediction errors.

평균과 비율 비교 (Hypothesis Testing: Means and Proportions)

  • 박선일;이영원
    • 한국임상수의학회지
    • /
    • 제26권5호
    • /
    • pp.401-407
    • /
    • 2009
  • In the previous article in this series we introduced the basic concepts for statistical analysis. The present review introduces hypothesis testing for continuous and categorical data for readers of the veterinary science literature. For the analysis of continuous data, we explained t-test to compare a single mean with a hypothesized value and the difference between two means from two independent samples or between two means arising from paired samples. When the data are categorical variables, the $x^2$ test for association and homogeneity, Fisher's exact test and Yates' continuity correction for small samples, and test for trend, in which at least one of the variables is ordinal is described, together with the worked examples. McNemar test for correlated proportions is also discussed. The topics covered may provide a basic understanding of different approaches for analyzing clinical data.

다가자료에 대한 혼합효과모형 (A generalized logit model with mixed effects for categorical data)

  • 최재성
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.129-137
    • /
    • 2002
  • 본 논문은 개체의 반응에 영향을 미치는 독립변수들중 일부는 고정요인들이고 일부는 확률요인들로 간주되며 반응변수가 다가범주를 갖는 명목형 변수일 때, 다원분류표에서 자료를 분석하기 위한 모형으로 혼합효과모형을 제시하고 모형내 미지모수들을 추정하는 방법을 다루고 있다

다가자료에 대한 혼합효과모형 (A generalized logit model with mixed effects for categorical data)

  • 최재성
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2001년도 추계학술대회
    • /
    • pp.25-33
    • /
    • 2001
  • 본 논문은 개체의 반응에 영향을 미치는 독립변수들중 일부는 고정요인들이고 일부는 확률요인들로 간주되며 반응연수가 다가범주를 갖는 명목형 변수일때, 다원분류표에서 자료를 분석하기 위한 모형으로 혼합효과 모형을 제시하고 모형내 미지모수들을 추정하는 방법을 다루고 있다.

  • PDF

영 과잉 순서적 프로빗 모형을 이용한 한국인의 음주자료에 대한 베이지안 분석 (Bayesian Analysis of Korean Alcohol Consumption Data Using a Zero-Inflated Ordered Probit Model)

  • 오만숙;오현탁;박세미
    • 응용통계연구
    • /
    • 제25권2호
    • /
    • pp.363-376
    • /
    • 2012
  • 순서적 다항 반응변수의 경우 종종 과도하게 많은 수의 관측치가 0 범주에서 발생하는 영 과잉 특성을 지닌다. 이러한 영 과잉 자료에서 0범주를 발생시키는 요인이 여러 개 존재할 때 일반적인 순서적 프로빗 모형은 자료를 설명함에 있어서 한계를 지닌다. 본 논문에서는 영 과잉 특성을 반영한 이 단계 영 과잉 순서적 프로빗 모형의 베이지안 분석기법을 제시하고 이를 2008년도 통계청에서 조사한 한국인의 음주소비 자료에 적용시킨다. 첫 번째 단계에서는 음주소비가 하나도 없다고 답한 0 범주에 속하는 비음주자들을 신념 또는 영구적 건강상의 문제 등으로 상황에 관계없이 음주를 하지 않는 절대적 비음주자(genuine non-drinker, non-participant)와 현재 소비가 없지만 상황에 따라 음주자가 될 가능성이 있는 잠재적 음주자(zero consumption potential drinker)로 구분하는 프로빗 모형을 적용시켜 분석한다. 두 번째 단계에서는 잠재적 음주자와 1 이상의 범주에 속하는 실제적 음주자를 합하여 음주자 집단으로 보고 이에 대하여 순서적 프로빗 모형을 적용하여 분석한다. 분석결과, 비음주자 중 약 30%가 절대적 비음주자로 음주자료가 일반적 순서적 자료에 비하여 뚜렷한 영 과잉 특성을 가짐을 알 수 있었다. 각 변수의 한계효과를 분석함으로써 같은 설명변수가 절대적 비음주자와 잠재적 음주자에 미치는 영향이 서로 반대로 나타날 수 있음을 발견하였고, 따라서 한국인의 음주자료에 대하여 제안된 영 과잉 순서적 프로빗 모형이 유용함을 보여주었다.