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Abstract
A lot of studies on the summary measures of predictive strength of categorical response models consider

the likelihood ratio index (LRI), also known as the McFadden-R2, a better option than many other measures.
We propose a simple modification of the LRI that adjusts for the effect of the number of response categories on
the measure and that also rescales its values, mimicking an underlying latent measure. The modified measure
is applicable to both binary and ordinal response models fitted by maximum likelihood. Results from simula-
tion studies and a real data example on the olfactory perception of boar taint show that the proposed measure
outperforms most of the widely used goodness-of-fit measures for binary and ordinal models. The proposed R2

interestingly proves quite invariant to an increasing number of response categories of an ordinal model.

Keywords: goodness-of-fit, likelihood ratio index, ordinal model, probit model, Pseudo-R2, R-
squared

1. Introduction

Determining the predictive strength of a categorical response model is neither an easy nor straightfor-
ward task as it is the case with linear models. The coefficient of determination (R2

(ols)) in ordinary least
squares regression provides an intuitive and very well specified measure of fit, but is largely inapplica-
ble to discrete response models. Although several R2-like measures, popularly known as ‘Pseudo-R2’,
have been suggested in the literature for the assessment of the predictive strength of categorical models
(see for example, McFadden, 1974; Cox and Snell, 1989; Nagelkerke, 1991; McKelvey and Zavoina,
1976; Heinzl and Mittlböck, 2003; Tjur, 2009; Zhang, 2017; Piepho, 2019), no meaningful consensus
has yet been reached on which of those performs best in empirical studies. A couple of studies in
the past seem to favor McFadden’s R2

(mf), considering its easy computation, intuitive interpretation,
base-rate stability in binary models and possible information theory interpretation (see, Hauser, 1978;
Windmeijer, 1995; Menard, 2000). Nevertheless, despite all its appealing features, R2

(mf) still has some
drawbacks that render its use questionable, particularly in ordinal response models. As Long (1997)
observed, there is no clear interpretation of values other than zero and one, in other words, values
between these two ranges seem somewhat arbitrary since there is no meaningful way to determine
if they are large or small. Moreover, Hagle and Mitchell II (1992) observed that R2

(mf) significantly
underestimates R2

(ols) of an underlying continuous model.
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We propose a simple modification of R2
(mf) that addresses its key limitations, making it useful

for both binary and ordinal models obtained via the maximum likelihood. The proposed measure
is presented in Section 3 after a short discussion on the latent variable motivation of binary/ordinal
models in Section 2. A simulation study and an empirical application are presented in Sections 4 and
5, respectively. Section 6 concludes.

2. Latent variable motivation

Given an ordinal response yi for subject i = 1, . . . , n, with potential values 1, . . . , r, consider a contin-
uous underlying latent variable ỹi with the following generating function:

ỹi = x>i β̃ + εi, i = 1, . . . , n, (2.1)

where xi is a vector of covariates, β̃ a vector of regression parameters and εi an error term. Suppose
−∞ = τ0 < τ1 < · · · < τr = ∞ are cut-points on ỹi such that the observed response yi satisfies the
threshold model,

yi = j⇔ τ j−1 < ỹi < τ j,

with j = 1, 2, . . . , r. For the error term εi, typically a normal or logistic distribution is assumed, lead-
ing to a so-called cumulative probit or logit model, respectively; see, e.g., Agresti (2002) for details.
Models obtained through this means are said to be latent variable motivated, and could possibly refer-
ence the originating model. As a consequence, a common criterion when assessing the goodness-of-fit
of such a model is that the Pseudo-R2 used to measure its predictive strength should be as close as
possible to the R2

(ols) of the underlying continuous model; see, for example, Hagle and Mitchell II
(1992); Windmeijer (1995); Veall and Zimmermann (1992). The R2

(ols) is the popular coefficient of
determination in the classical linear model calculated through

R2
(ols) = 1 −

∑
i

(
ỹi − ˆ̃yi

)2

∑
i
(
ỹi − ¯̃y

)2 , (2.2)

where ˆ̃yi denotes the fitted (latent) response of subject i using the estimated parameters ˆ̃β and the
explanatory variables xi, and ¯̃y denotes the sample (arithmetic) mean of the ỹi. This measure has some
interesting properties that makes it widely useful. As noted in Rao (1973),

1. It has an easy and intuitive interpretation as the proportion of the variance explained by the model.

2. It lies between 0 and 1.

3. It is dimensionless, i.e., it is independent of all units of measurement from the variables, and

4. it is independent of sample size.

The literature is inundated with several analogs to R2
(ols) designed to achieve some of the above

listed criteria for generalized linear models and their extensions. One of such is the so-called likeli-
hood ratio index (LRI), also known as the McFadden’s R2

(mf) (McFadden, 1974; Maddala, 1983), and
may be expressed as follows;

R2
(mf) = 1 −

`p

`0
, (2.3)
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where `p is the (maximum) log-likelihood of the full model (with p-predictors) and `0 is the log-
likelihood of the (null) model with intercept alone. With some algebra one has R2

(mf) = G/(−2`0),
where G = −2[`0−`p] is the model chi-square statistics and −2`0 the minus two log-likelihood statistic
of the null model.

According to Hosmer and Lemeshow (1989), the latter quantity is identically equal to the sum
of squared errors in the ordinary least squares (OLS) null model, i.e., it captures the error variation
of the model with only the intercept present (Nagelkerke, 1991; Menard, 2000). Thus, similar to the
R2

(ols) which is interpreted as the proportional reduction in the error sum of squares, the R2
(mf) is more

or less considered the proportional reduction in the −2 log-likelihood statistic (Menard, 2000). This
makes it a bit more intuitive than most competing measures and also widely reported in empirical
studies. However, in addition to the limitations of R2

(mf) already mentioned in the Introduction, one
crucial but often ignored question is how R2

(mf) changes with increasing number of response categories
of an ordinal model. In other words, how does a regrouped response category (merging or splitting)
given the same dataset affect R2

(mf)? Going by the invariance property of cumulative models motivated
through an underlying, latent variable, the same parameters occur for the effects regardless of how
the cut-points discretize the continuous scale (Agresti, 2002). Consequently, an adequate summary
measure of predictive strength of categorical models should yield consistent conclusion with the same
dataset irrespective of changes in the number of response categories. This, however, is not the case
with R2

(mf) given in (2.2). In general, the quantity

γr =
`p (r)
`0 (r)

, r = 2, 3, . . . , (2.4)

capturing the amount of likelihood explained in a given model happens to depend on r. More specif-
ically, if sample size n remains fixed and r increases, γr approaches 1 (it’s upper limit) because `0(r)
tends towards the value of `p(r) due to the increasing number of threshold parameters/cut-points. As
a consequence, R2

(mf) decreases with increasing r. One implication of this is that two researchers with
different choice of response categories for studying the same predictor effect may eventually end up
with two different conclusions. Hence, there is apparently some need for a correcting factor on the
likelihood ratio index in case of ordinal response models.

3. The modified measure

As already seen, the dependency of R2
(mf) on the number of response categories r, especially in ordinal

models motivated by an underlying continuous model, is hardly desirable for a supposedly good
measure of fit. Agresti (1986) made a similar observation about so-called entropy-based measures
which include R2

(mf), suggesting the need for an appropriate correction that could account for the effect
of r on such measures. Moreover, Veall and Zimmermann (1996) argue that in terms of ordinal
models, the most useful R-squared is one that is most comparable to the R2 on the underlying latent
variable model, i.e., R2

(ols). Thus, to redress the effect of r on the likelihood ratio index, we propose
the use of a stabilizing exponential penalty on γr. Assuming the following penalized likelihood ratio
index (Ugba and Gertheiss, 2018):

R2
(r) = 1 − γλ(r)

r , r = 2, 3, . . . , (3.1)

where λ(r) is a strictly positive penalty function that is monotonically increasing in r. Here,
we will consider and evaluate penalties with different functional shapes, including a direct one-to-
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Figure 1: Candidate penalty functions for the modified McFadden measure plotted against an increasing number
of response categories (r = 2, 3, . . . ,10).

one mapping of increasing number of categories, and some non-linear (mostly) concave and convex
shaped penalties. Specifically, we consider the following six candidate penalty functions:

λ1 (r) = r,

λ2 (r) =
√

2r,

λ3 (r) = 2 +
√

r − 2 , (3.2)
λ4 (r) = log2 2r = 1 + log2 r,

λ5 (r) = 2 + log2 (r − 1) ,

λ6 (r) = 2 + (r − 2)
3
2 .

These functions are shown in Figure 1 against an increasing number of response categories r. The
various formulations represent penalties with both high and low impact on the likelihood ratio index.
The first penalty λ1(r) provides an identity mapping, λ2(r) to λ5(r) are concave shaped penalty func-
tions, while λ6(r) provides a convex shaped penalty. Here, all functions start at λ(2) = 2 for binary
regression, which worked well in preliminary studies (Ugba and Gertheiss, 2018), but will also be fur-
ther investigated/illustrated in Section 4 below. Although not included in (3.2), a special (yet extreme)
case of (3.1) results in having constant λ0(r) = 1 for all r, which collapses the penalized measure to
the original non-penalized likelihood ratio index (i.e., R2

(mf)). This implies that both measures would
share some properties. Indeed, with |`p(r)| ≤ |`0(r)| in fully identified likelihood estimated models, the
ratio γr given in (2.4) always lies in the interval [0, 1], meaning that for the modified R2

(r) from (3.1)
0 ≤ R2

(r) ≤ 1 holds as well. Moreover, since typically 0 < γr < 1, the fact that each of the considered
λ(r) candidates is strictly monotone means that it will countervail the effect that R2

(mf) tends to decrease



Modified McFadden’s R2 53

Figure 2: The error (i.e., deviations from R2
(ols)) of R-squared measures obtained from a thousand replications

of the binary probit model, with the three columns denoting the three sample sizes considered and the rows the
four different standard deviation specifications. Abbreviated measures include: Cox & Snell (cs), Nagelkerke
(nk), McKelvey & Zavoina (mz), Tjur (tj), McFadden (mf) and two different specifications of the modified

measure (ug2 and ug3).
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Figure 3: The error (i.e., deviations from R2
(ols)) of R-squared measures obtained from a thousand replications of

the binary probit model with five additional, purely noise predictors. The three columns denote the three sample
sizes considered and the rows the four different standard deviation specifications. Abbreviated measures include:
Cox & Snell (cs), Nagelkerke (nk), McKelvey & Zavoina (mz), Tjur (tj), McFadden (mf) and two different

specifications of the modified measure (ug2 and ug3).
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for increasing r. Finally, R2
(r) ideally approximates the underlying R2

(ols). In summary, any of the penal-
ties in (3.2) resulting in a stable R2-value across a varying number of ordinal response categories, r,
and also approximating R2

(ols) closely, could be considered a useful penalty function. In what follows,
those two aspects will be evaluated for the candidate functions in numerical experiments.

4. Simulation study

We present an analysis of simulated binary and ordinal response data given a variety of data generation
specifications. First, the continuous underlying latent variable, ỹi, was obtained under two different
covariate settings as follows:

(a) Single distribution, where xi = (xi1, xi2)>, i = 1, . . . , n, with both variables taken from i.i.d U(0, 1),
n the number of observations and the fixed regression parameters β̃ = (β0, β1, β2)> equal to 0, 1,
and 2, respectively.

(b) Mixed distribution, where xi = (xi1, xi2, xi3, xi4, xi5)>, i = 1, . . . , n, with the first three variables
taken from i.i.d N(0, 1) and the remaining two from i.i.d U(0, 1). The fixed regression parameters
β̃ = (β0, β1, β2, β3, β4, β5)> are equal to 0, −1/3, −2/3, −1, 1, and 2, respectively.

The disturbance term, εi was taken from N(0, σ) in both settings, with σ denoting the standard
deviation. The entire experiment was conducted with three different sample sizes n = 100, 500, 1,000
and four different specifications of the standard deviation σ = 1,2,3,4. A thousand replications of
datasets {(ỹi, xi), i = 1, . . . , n} were obtained and response values were subsequently discretized (r ≥
2) with equidistant cut-points (equal quantiles), resulting in a thousand replications of {(yi, xi), i =

1, . . . , n}. The underlying R2
(ols) was obtained from the continuous latent models (fitted with the lm()

function from the stats R-package (RC Team, 2022). We move on to present the results from the
first simulation setting (single predictor distribution, binary response).

4.1. Results from binary models

The modified R2
(r) was obtained from binary probit models built with the simulated categorical/binary

response, yi, and the predictors used in the underlying model (fitted with the glm() function from the
stats R-package). In the binary case, i.e., r = 2, each λ(r) candidate considered in (3.2) evaluates
to 2. So to create a further rival penalty, we consider an additional instance where the penalty equals
something else, say λ̃(2) = 3. Moreover, to compare the modified measure with existing measures,
McFadden’s R2

(mf) together with other commonly used R-squared measures for categorical models
were also obtained. These include the Cox & Snell’s R2

(cs) and its corrected version, popularly known
as the Nagelkerke’s R2

(nk) (see, Cox and Snell, 1989; Nagelkerke, 1991). Also obtained were the
McKelvey & Zavoina R2

(mz) (McKelvey and Zavoina, 1976), and the Tjur R2
(tj) (Tjur, 2009); these two

metrics do not depend on the model’s likelihood. Details about the functional forms of the additional
measures can be found in the given references, also with a general overview found, for instance, in
Allison (2013).

Given a thousand replications of all the measures under consideration, the corresponding errors ∆

= R2
(r=2) − R2

(ols) were obtained. Figure 2 shows the extent to which these measures approximate the
underlying R2

(ols). The modified R2
(r=2) with λ(2) = 2 (denoted by ‘ug2’ in Figures 2 and 3) particularly

performs very well, and also compares favorably with McKelvey & Zavoina’s R2
(mz), which reportedly

approximated R2
(ols) very well in previous studies (see, e.g., Hagle and Mitchell II, 1992; Windmeijer,
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Figure 4: R-squared of multi-categorical response models against increasing number of response category
(r = 2, 3, . . . , 10), comparing existing measures with the underlying measure (ols). Rows and columns respec-
tively denote the four different specifications of standard deviation of ỹi and the three sample sizes. Abbreviated

measures include: McFadden (mf), Cox & Snell (cs), Nagelkerke (nk), and the underlying measure (ols).
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Figure 5: R-squared of multi-categorical response models against increasing number of response category (r =

2, 3, . . . , 10), comparing the modified measure with the underlying measure (ols). Rows and columns respectively
denote the four different specifications of standard deviation of ỹi and the three sample sizes.
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1995; Veall and Zimmermann, 1992). The modified measure with λ̃(2) = 3 (denoted by ‘ug3’ in
Figures 2 and 3), however, over-estimates the underlying measure, whereas the rest of the measures
under-estimate the same at different rates. In particular, when compared to McFadden’s original R2

(mf),
it is very obvious that the modified version (ug2) provides a reasonable improvement.

In order to further examine the measures’ performance, another five purely noise covariates (also
drawn from i.i.d U(0, 1)) were added to the models to fit, while the true data generating process as
described above remains the same. Results are presented in Figure 3. However, there doesn’t seem to
be any substantial difference to the results presented in Figure 2.

4.2. Results from ordinal models

We further investigate the performance of the modified measure in multi-categorical, ordinal response
models, also comparing it with the underlying and existing measures. As earlier argued in Section 2,
in addition to approximating the underlying measure, a good summary measure for the discrete mod-
els should as well be invariant to the number of response categories r, used in the model, especially
if the dependent variable yi is motivated by an underlying latent variable ỹi. Thus, we obtained and
compared the different summary measures under increasing r = 2, 3, . . . , 10. The non-likelihood mea-
sures were excluded at this point since they do not easily (or not at all) extend to multi-categorical
models. Figure 4, in particular, compares the existing measures with the underlying R2

(ols) (with each
point being the average R2-value over a 1,000 replications), while Figure 5 compares the modification
proposed to R2

(ols). In both plots, different sample sizes (columns) and variances (rows) are considered.
As observed in Figure 4, all the measures are somewhat affected by changes in the number of response
categories, with R2

(mf) and R2
(cs) being affected the most.

Either of these two measures are widely reported in empirical studies for multi-categorical models,
but as observed in Figure 4, apart from not being invariant to r, they also diverge in opposite directions
to each other as r moves away from dichotomization, with R2

(mf), in particular, depreciating monoton-
ically. In this instance, not only would the choice of r mean two different conclusions, e.g., for two
independent researchers modeling the same predictor effects on the same dataset. Choosing between
any of these measures could as well lead to conflicting conclusions. On the contrary, the modified
measure (Figure 5) with certain penalty specifications provides a stable metric for determining the
predictive strength of ordinal models. Even though effect-sizes in both Figures 4 and 5 depreciate
row-wise (i.e., as the latent error variance increases), the same shape is maintained comparing the
different measures with the underlying measure. Overall, sample size doesn’t seem to make any sub-
stantial difference. Of all the six penalties used for the modified measure, λ2 and λ4 seem to perform
best. Both prove quite invariant to r and also approximate the underlying measure closely. Of course,
the finding that λ2 and λ4 perform similarly is not surprising since both functions have quite similar
shape on the r-values considered (see, Figure 1). Overall, all concave candidate functions considered
(i.e., λ2–λ5) appear to provide substantial improvement over the original McFadden R2

(mf). Since re-
sults from the second simulation setting (b) do not significantly differ from the discussed results, they
are not provided in detail here, but as part of the online supplementary materials.

5. Empirical application

For a practical application of the modified measure and comparison with related measures, an ordered
multi-categorical response obtained via sensory evaluation of boar taint is considered. Due to animal
welfare concerns, the production of entire male pigs is seen as a viable alternative to surgical cas-
tration. Elevated levels of so-called boar taint may, however, impair consumer acceptance (see, for
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Table 1: Linear, binary and ordinal models of the sensory data, with androstenone (AN), skatole (SK) and inter
action (AN:SK) as predictors of deviant smell

Linear Model Binary Model Ordinal Model
B SE-B Pr(> |t|) B SE-B Pr(> |z|) B SE-B Pr(> |z|)

α 1.853 0.023 0.00 *** −0.395 0.045 0.00 ***
α1 1.168 0.054 0.00 ***
α2 −0.403 0.044 0.00 ***
α3 −1.600 0.066 0.00 ***
α4 −2.614 0.118 0.00 ***
AN 0.179 0.024 0.00 *** 0.270 0.048 0.00 *** 0.240 0.038 0.00 ***
SK 0.403 0.025 0.00 *** 0.482 0.051 0.00 *** 0.540 0.041 0.00 ***

AN:SK 0.092 0.020 0.00 *** 0.015 0.047 0.75 0.118 0.033 0.00 ***
R2

(cs) 0.188 0.302
R2

(nk) 0.258 0.326
R2

(mz) 0.293
R2

(tj) 0.204
R2

(mf) 0.159 0.139
R2

(r) : λ1 0.293 0.527
R2

(r) : λ2 0.293 0.377
R2

(r) : λ3 0.293 0.428
R2

(r) : λ4 0.293 0.392
R2

(r) : λ5 0.293 0.451
R2

(r) : λ6 0.293 0.807
R2

(ols) 0.379

Applicable R-squared for the different models are reported below each model. The significance code ‘***’ indicates values
< 0.001.

example, Trautmann et al., 2014 and references therein). Boar taint is (presumably) caused by two
malodorous volatile substances: Androstenone and skatole (compare, for example, Meier-Dinkel et
al., 2015).

In what follows, we consider data from an experimental study presented in Mörlein et al. (2016)
where fat samples of more than a thousand samples of pig carcasses were collected and subjected to
a thorough sensory evaluation and quantification using a panel of 10 trained assessors on a sensory
score scale ranging from 0 = ‘untainted’ to 5 = ‘strongly deviant smell’; also see Mörlein et al. (2021).
The average panel rating for all the samples were also obtained and available for the present analysis.
The question of interest is how this measure is influenced by the samples’ androstenone and skatole
contents. In practice, however, panel ratings are often discretized to a binary or multi-categorical
variable, with a typical cut point for dichotomization (boar tainted/no boar taint) being 2; compare,
for example, Meier-Dinkel et al. (2015). For multi-categorical grouping, Mörlein et al. (2016) used
the following subdivision of the average panel rating: [0, 1), [1, 2), [2, 3), [3, 4) and [4, 5]. We also
adopt such grouping in our analysis of the olfactory perception of boar taint, fitting both a binary and
ordinal probit model using androstenone, skatole and their interaction as predictors (compare Mörlein
et al., 2016; Ugba et al., 2021). Due to the skewed distribution of androstenone and skatole, the
two covariates were standardized after being transformed logarithmically. In a few cases, however,
androstenone had a value of zero, which may be due to androstenone content below the detection
threshold, or defective measurement. Therefore, those observations were excluded from further anal-
ysis. A linear version of the categorical model having the same predictors, but with the average panel
rating as response was fitted as well (similarly to Mörlein et al., 2016). As shown in Table 1, compa-
rable patterns of predictor effects are seen in all the models. The covariates, androstenone and skatole,
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are shown to be significant predictors of deviant smell (p < 0.001) in all models. Interactions were
also significant in all but the binary model. The overall goodness-of-fit of both the binary and ordinal
model was assessed using the modified R2

(r) and other applicable measures, while the coefficient of
determination R2

(ols) was calculated for the linear model. As shown in Table 1, all the reported R2s
indicate some association between the response and the predictors. As already observed in the sim-
ulation studies, the modified measure employing λ2 or λ4 appears to approximate R2

(ols) quite well,
whereas particularly the convex penalty function above the diagonal (λ6) does a very poor job if the
number of levels increases. Although there is a drop in the numbers for all the measures in the binary
case, the modified R2

(r=2) and again McKelvey & Zavoina’s R2
(mz) still perform best.

From the viewpoint of interpretation, particularly if the latent R2
(ols) is not available (which of

course is typically the case in ordinal regression), the question remains whether the Pseudo R2-values
obtained amount to a substantial effect or not. First, we note that concerning McFadden’s R2

(mf)-values
between 0.2 and 0.4 are taken to represent a very good fit of the model (McFadden, 1974). Simulations
by Domencich et al. (1975) equivalence this range to 0.7 to 0.9 for a linear model (Louviere et al.,
2000). In a similar vein, when referencing an underlying measure, values of the modified measure
within the latter range would represent very good fits. Thus, the overall goodness-of-fit of the ordinal
model of the sensory data, considering R2

(r) (with either λ2 or λ4 penalty), indicate a moderately good
fit. Further diagnostic checks via hypothesis tests could tell if lack of fit does exist or not. For instance,
the tests suggested in Fagerland and Hosmer (2016), see also Jeong and Lee (2009); Yoo and Kim
(2020).

6. Discussion

The R-squared measure is considered a very crucial diagnostic tool in empirical studies because it pro-
vides a quick evaluation of the predictive strength of the fitted models. However, whether or not to use
a Pseudo R-squared measure for categorical response models has been an issue of intense debate in the
literature for decades. A lot of measures have been proposed for this very purpose, with the very re-
cent being measures proposed by Zhang (2017) for the generalized linear model and Piepho (2019) for
the generalized linear mixed models. The latter, in particular, proposes a coefficient of determination
that is defined on the linear predictor scale. Highlighting the pros and cons of several goodness-of-
fit measures for the logistic regression model, Allison (2014) made mention of Tjur’s coefficient of
discrimination, denoted by (R2

(tj)) in this article, for its simplicity and intuitive understanding, while
also making a paradigm shift from recommending the Cox & Snell R2

(cs) to the McFadden R2
(mf). A

couple of reasons seem to support R2
(mf), particularly its simple formulation, base-rate stability in bi-

nary models, as well as, an intuitive interpretation as the proportional reduction in the log-likelihood
statistics of fitted models (Menard, 2000). Several statistical software products (SPSS and SAS, for
instance) report R2

(mf) in their standard outputs for ordinal response models. Nevertheless, as observed
in this study, we may not support such use of R2

(mf) in ordinal models. Apart from underestimating
the underlying measure, and in a sharp contrast to similar measures which all appreciate towards the
underlying measure under increasing number of response categories, R2

(mf) attaches smaller values to
more complicated models (having a larger number of response categories) built on the same dataset.
An alternative to R2

(mf) that redresses its key limitations is proposed in this study. In a nutshell, we

recommend an exponentially penalized likelihood ratio index with a stabilizing penalty of λ(r) =
√

2r,
λ(r) = 1 + log2 r, or a similar function. Results from simulation studies and real data examples very
well attest to the usefulness of the proposed measure in binary and ordinal models. Our modifica-
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tion also provides a likelihood-based alternative to the McKelvey & Zavoina R2
(mz), which is rarely

reported due to its complexity in computation and interpretation. Finally, the modified measure is
also supposed to mimic (at least to some extent) Rao’s properties of the coefficient of determination
mentioned earlier in this paper. Specifically, (1) it has a passably easy and intuitive interpretation as
a penalized version of the proportional reduction in the −2 log-likelihood statistic, (2) it yields values
that are between 0 and 1, (3) it is dimensionless, for instance, the scale of measurement of skatole and
androstenone in the real data application is of no consequence to the modified R2-values, and (4) as
observed from the simulation studies, it also seems to be rather independent of the sample size.

The proposed measure and other goodness-of-fit measures for categorical models have been im-
plemented in the R add-on package gofcat (Ugba, 2022), available from the comprehensive R archive
network (CRAN). The sensory data (Mörlein et al., 2021) analyzed in this paper is available from Zen-
odo. Moreover, the generated comparison plots for simulation setting (b) in analogy to Figures 2–5
are available as part of an online appendix.
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