• Title/Summary/Keyword: Orbit dynamics

Search Result 92, Processing Time 0.03 seconds

Snapshot of carrier dynamics from amorphous phase to crystal phase in Sb2Te3 thin film

  • Choi, Hyejin;Jung, Seonghoon;Ahn, Min;Yang, Won Jun;Han, Jeong Hwa;Jung, Hoon;Jeong, Kwangho;Park, Jaehun;Cho, Mann-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.139.2-139.2
    • /
    • 2016
  • Electrons and phonons in chalcogenide-based materials play are important factors in the performance of an optical data storage media and thermoelectric devices. However, the fundamental kinetics of carriers in chalcogenide materials remains controversial, and active debate continues over the mechanism responsible for carrier relaxation. In this study, we investigated ultrafast carrier dynamics in an multilayered $\{Sb(3{\AA})/Te(9{\AA})\}n$ thin film during the transition from the amorphous to the crystalline phase using optical pump terahertz probe spectroscopy (OPTP), which permits the relationship between structural phase transition and optical property transitions to be examined. Using THz-TDS, we demonstrated that optical conductance and carrier concentration change as a function of annealing temperature with a contact-free optical technique. Moreover, we observed that the topological surface state (TSS) affects the degree of enhancement of carrier lifetime, which is closely related to the degree of spin-orbit coupling (SOC). The combination of an optical technique and a proposed carrier relaxation mechanism provides a powerful tool for monitoring TSS and SOC. Consequently, the response of the amorphous phase is dominated by an electron-phonon coupling effect, while that of the crystalline structure is controlled by a Dirac surface state and SOC effects. These results are important for understanding the fundamental physics of phase change materials and for optimizing and designing materials with better performance in optoelectronic devices.

  • PDF

Photofragment Translational Spectroscopy of CH₂I₂ at 304 nm: Polarization Dependence and Energy Partitioning

  • 정광우;Temer S. Ahmadi;Mostafa A. El-Sayed
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.12
    • /
    • pp.1274-1280
    • /
    • 1997
  • The photodissociation dynamics of CH2I2 has been studied at 304 nm by state-selective photofragment translational spectroscopy. Velocity distributions, anisotropy parameters, and relative quantum yields are obtained for the ground I(2P3/2) and spin-orbit excited state I*(2P1/2) iodine atoms, which are produced from photodissociation of CH2I2 at this wavelength. These processes are found to occur via B1 ← A1 type electronic transitions. The quantum yield of I*(2P1/2) is determined to be 0.25, indicating that the formation of ground state iodine is clearly the favored dissociation channel in the 304 nm wavelength region. From the angular distribution of dissociation products, the anisotropy parameters are determined to be β(I)=0.4 for the I(2P3/2) and β(I*)=0.55 for the I*(2P1/2) which substantially differ from the limiting value of 1.13. The positive values of anisotropy parameter, however, show that the primary processes for I and I* formation channels proceed dominantly via a transition which is parallel to I-I axis. The above results are interpreted in terms of dual path formation of iodine atoms from two different excited states, i.e., a direct and an indirect dissociation via curve crossing between these states. The translational energy distributions of recoil fragments reveal that a large fraction of the available energy goes into the internal excitation of the CH2I photofragment; < Eint > /Eavl=0.80 and 0.82 for the I and I* formation channels, respectively. The quantitative analysis for the energy partitioning of available energy into the photofragments is used to compare the experimental results with the prediction of direct impulsive model for photodissociation dynamics.

On the Dynamics of Multi-Dimensional Lotka-Volterra Equations

  • Abe, Jun;Matsuoka, Taiju;Kunimatsu, Noboru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1623-1628
    • /
    • 2004
  • In the 3-dimensional cyclic Lotka-Volterra equations, we show the solution on the invariant hyperplane. In addition, we show the existence of the invariant hyperplane by the center manifold theorem under the some conditions. With this result, we can lead the hyperplane of the n-dimensional cyclic Lotka-Volterra equaions. In other section, we study the 3- or 4-dimensional Hamiltonian Lotka-Volterra equations which satisfy the Jacobi identity. We analyze the solution of the Hamiltonian Lotka- Volterra equations with the functions called the split Liapunov functions by [4], [5] since they provide the Liapunov functions for each region separated by the invariant hyperplane. In the cyclic Lotka-Volterra equations, the role of the Liapunov functions is the same in the odd and even dimension. However, in the Hamiltonian Lotka-Volterra equations, we can show the difference of the role of the Liapunov function between the odd and the even dimension by the numerical calculation. In this paper, we regard the invariant hyperplane as the important item to analyze the motion of Lotka-Volterra equations and occur the chaotic orbit. Furtheremore, an example of the asymptoticaly stable and stable solution of the 3-dimensional cyclic Lotka-Volterra equations, 3- and 4-dimensional Hamiltonian equations are shown.

  • PDF

Development of KOMPSAT-2 Vehicle Dynamic Simulator for Attitude Control Subsystem Functional Verification

  • Suk, Byong-Suk;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1465-1469
    • /
    • 2003
  • In general satellite verification process, the AOCS (Attitude & Orbit Control Subsystem) should be verified through several kinds of verification test which can be divided into two major category like FBT (Fixed Bed Test) and polarity test. And each test performed in different levels such as ETB (Electrical Test Bed) and satellite level. The test method of FBT is to simulate satellite dynamics with sensors and actuators supported by necessary environmental models in ETB level. The VDS (Vehicle Dynamic Simulator) try to make the real situation as possible as the on-board processor will undergo after launch. The purpose of FBT test is to verify that attitude control logic function and hardware interface is designed as expected with closed loop simulation. The VDS is one of major equipments for performing FBT and consists of software and hardware parts. The VDS operates in VME environments with target board, several commercial boards and custom boards based on the VxWorks real time operating system. In order to make time synchronization between VDS and satellite on-board processor, high reliable semaphore was implemented to make synchronization with the interrupt signal from on-board processor. In this paper, the real-time operating environment used on VDS equipment is introduced, and the hardware and software configurations of VDS summarized in the systematic point of view. Also, we try to figure out the operational concept of VDS and AOCS verification test method with close-loop simulation.

  • PDF

Analysis on Tracking Schedule and Measurements Characteristics for the Spacecraft on the Phase of Lunar Transfer and Capture

  • Song, Young-Joo;Choi, Su-Jin;Ahn, Sang-Il;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.51-61
    • /
    • 2014
  • In this work, the preliminary analysis on both the tracking schedule and measurements characteristics for the spacecraft on the phase of lunar transfer and capture is performed. To analyze both the tracking schedule and measurements characteristics, lunar transfer and capture phases' optimized trajectories are directly adapted from former research, and eleven ground tracking facilities (three Deep Space Network sties, seven Near Earth Network sites, one Daejeon site) are assumed to support the mission. Under these conceptual mission scenarios, detailed tracking schedules and expected measurement characteristics during critical maneuvers (Trans Lunar Injection, Lunar Orbit Insertion and Apoapsis Adjustment Maneuver), especially for the Deajeon station, are successfully analyzed. The orders of predicted measurements' variances during lunar capture phase according to critical maneuvers are found to be within the order of mm/s for the range and micro-deg/s for the angular measurements rates which are in good agreement with the recommended values of typical measurement modeling accuracies for Deep Space Networks. Although preliminary navigation accuracy guidelines are provided through this work, it is expected to give more practical insights into preparing the Korea's future lunar mission, especially for developing flight dynamics subsystem.

The Application of Orbital Modeling and Rational Function Model for Ground Coordinate from High Resolution Satellite Data (고해상도 인공위성데이터로부터 지상좌표 결정을 위한 궤도모델링 및 RFM기법 적용)

  • Seo, Doo-Chun;Yang, Ji-Yeon;Lee, Dong-Han;Im, Hyo-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.187-195
    • /
    • 2008
  • Generation of accurate ground coordinates from high resolution satellite image are becoming increasingly of interest. The primary focus of this paper is to compute satellite direct sensor model (DSM) and rational function model (RFM) for accurate generation of ground coordinates from high resolution satellite images. Being based on this we presented an algorithm to be able to efficiently ground coordinates about large area with introducing RFM(rational function model) method applied to rigorous sensor modeling standing on basis of satellite orbit dynamics and collinearity equation, and sensor modeling of high-resolution satellite data like IKONOS, QuickBird, KOMPSAT-2 and others. The general high resolution satellite measures the position, velocity and attitude data of satellite using star, gyro, and GPS sensors.

  • PDF

Numerical analysis of the attitude stability of a charged spacecraft in the Pitch-Roll-Yaw directions

  • Abdel-Aziz, Yehia A.;Shoaib, Muhammad
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, the effect of Lorentz force on the stability of attitude orientation of a charged spacecraft moving in an elliptic orbit in the geomagnetic field is considered. Euler equations are used to derive the equations of attitude motion of a charged spacecraft. The equilibrium positions and its stability are investigated separately in the pitch, roll and yaw directions. In each direction, we use the Lorentz force to identify an attitude stabilization parameter. The analytical methods confirm that we can use the Lorentz force as a stabilization method. The charge-to-mass ratio is the main key of control, in addition to the components of the radius vector of the charged center of the spacecraft, relative to the center of mass of the spacecraft. The numerical results determine stable and unstable equilibrium positions. Therefore, in order to generate optimum charge, which may stabilize the attitude motion of a spacecraft, the amount of charge on the surface of spacecraft will need to be monitored for passive control.

DEVELOPMENT OF MISSION ADN SPACECRAFT DYNAMICS ANALYSIS SYSTEM FOR GEOSTATION COMMUNICATION SATELLITE (통신위성의 임무 및 위성체 동역학 해석 시스템 개발)

  • 공현철;김방엽;김정아;윤진원
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.1
    • /
    • pp.251-260
    • /
    • 1998
  • We consider the motion of the subsystems as separate bodies as well as the entire satellite for the attitude and orbit control of a communication satellite by multi-body modeling technique. Thus, the system, can be applied to a general communication satellite as well as a specific communication satellite, i. e. Koreasat I,II. The simulation results can be viewed by two-dimensional graphics and three-dimensional animation. The graphical user interface(GUI) makes its usage much simpler. We have simulated a couple of scenarios for Koreasat I,II which are being operated as geostationary communication satellites to verify the system performance.

  • PDF

Unscented Kalman Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Park, Sang-Young;Abdelrahman, Mohammad;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.1-36.1
    • /
    • 2008
  • An Unscented Kalman Filter(UKF) for estimation of attitude and rate of a spacecraft using only magnetometer vector measurement is presented. The dynamics used in the filter is nonlinear rotational equation which is augmented by the quaternion kinematics to construct a process model. The filter is designed for low Earth orbit satellite, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. To stabilize the attitude, linear PD controller is applied and the actuator is assumed to be thruster. A Monte-Carlo simulation has been done to guarantee the stability of the filter performance to the various initial conditions. The UKF performance is compared to that of EKF and it reveals that UKF outperforms EKF.

  • PDF

Runout Control of Mgenetically Suspended Grinding Spindle - Experimental Analysis of Adaptive LMS Feedforward Control Method - (자기베어링으로 지지된 연삭 스핀들의 런아웃 제어 -LMS Feedforward 제어를 이용한 실험적 해석-)

  • 노승국;경진호;박종권;최언돈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.997-1001
    • /
    • 2000
  • In this paper, the case studies of reducing rotational errors is theoretically done for a grinding spindle with an active magnetic bearing system. The rotational errors acting on the magnetic bearing spindle are due to mass unbalance of rotor, runout, grinding excitation and unmodeled nonlinear dynamics of electromagnets. For the most case, the electrical runout of sensor target is big even in well finished surface, this runout can cause a rotation error amplified by feedback control system. The adaptiveed forward method based on LMS algorithm is discussed to compensate this kind of runout effects, and investigated its effectiveness by numerical simulation and experimental analysis. The electrical runout form the rear sensor target of grind spindle is about 70$\mu\textrm{m}$ with harmonic frequencies. The rotor orbit size in rear bearing is reduced about to 5$\mu\textrm{m}$ due to 1X and 2X rejection by feedforward control.

  • PDF