• 제목/요약/키워드: Orbit Model

검색결과 417건 처리시간 0.027초

위성용 카메라 비선형 모델의 잡음 특성 분석과 영상 신호-잡음비(Image SNR) 분포도 계산 (Noise Analysis of Nonlinear Image Sensor Model with Application to SNR Estimation)

  • 명환춘;이상곤
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.58-65
    • /
    • 2009
  • 본 논문은 검출기의 포화과정을 반영한 비선형 모델의 잡음 특성을 분석하고, 그러한 분석결과를 영상 신호-잡음비(Image SNR)의 분포도를 계산하기위하여 적용한다. 특별히, 검출 화소의 비선형성은 잡음분포(PDF)의 비대칭성과 화소 신호-잡음비(Pixel SNR)의 증폭이라는 두 가지 관점에서 분석되며, 제안된 영상 신호-잡음비 분포도를 이용하여 위성의 발사 후에 카메라 이득의 변화나 기타 상황에서도, 궤도상에서 최적의 위성 카메라 운영 변수들(노출시간, 누적횟수)을 얻을 수 있음이 주요한 특징으로 강조된다.

  • PDF

ERROR PROPAGATION ANALYSIS FOR IN-ORBIT GOCI RADIOMETRIC CALIBRATION

  • Kang, Gm-Sil;Youn, Heong-Sik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2008년도 International Symposium on Remote Sensing
    • /
    • pp.92-95
    • /
    • 2008
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. The GOCI has been designed to provide multi-spectral data to detect, monitor, quantify, and predict short term changes of coastal ocean environment for marine science research and application purpose. The target area of GOCI observation covers sea area around the Korean Peninsula. Based on the nonlinear radiometric model, the GOCI calibration method has been derived. The radiometric model of GOCI has been validated through radiometric ground test. From this ground test result, GOCI radiometric model has been changed from second order to third order. In this paper, the radiometric test performed to evaluate the radiometric nonlinearity is described and the GOCI radiometric error propagation is analyzed. The GOCI radiometric calibration is based on onboard calibration devices; solar diffuser, DAMD (Diffuser Aging Monitoring Device). The radiometric model error due to the dark current nonlinearity is considered as a systematic error. Also the offset correction error due to gain/offset instability is considered. The radiometric accuracy depends mainly on the ground characterization accuracies of solar diffuser and DAMD.

  • PDF

골격적 성숙도의 차이에 따라 RME 사용시 나타나는 상악골 복합체의 변화 (Skeletal Changes Following Application of RME at Different Maturation Stages)

  • 한순기;정동화;차경석
    • 구강회복응용과학지
    • /
    • 제23권4호
    • /
    • pp.373-384
    • /
    • 2007
  • The purpose of this study was to analyse the stress distribution on the craniofacial suture and cranium after application of RME. Twelve years and six months old boy and twenty years old adult male were chosen for taking computed-tomography for FEM. From DICOM visual information, it was processed by 3-dimensional image construction program Mimics 10.01. Hounsfield unit(HU) which shows gray scale of CT image is picked for revealing mechanical properties of each model. The models have been accomplished with various range of physical properties. After applying 5.0 mm expansion, the maxillary complex model was obeserved for analyzing displacement and stress distribution of the model. The amount of transverse expansion of child and adult maxilla is different according to its location. It appears that it decreases gradually with the distance from separation site. In child, maximum compressive stress located broad area in zygomatic buttress department and the ends of frontal process of maxilla, pterygoid plate, and bones surrounding orbit. However, in adult maximum compressive stress was located smaller area and the stres was higher than child.

Real-Time Relative Navigation with Integer Ambiguity

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.34.3-34.3
    • /
    • 2008
  • Relative navigation system is presented using measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide real-time relative navigation results as well as absolute navigation results for two formation flying satellites separated about 1km in low earth orbit. To improve the performance, more accurate dynamic model and modified relative measurement model are developed. This modified method prevents non-linearity of the measurement model from degrading precision by applying linearization about the states from absolute navigation algorithm not about a priori states. Furthermore, absolute states are obtained using ion-free GRAPHIC pseudo-ranges and precise relative states are provided using double differential carrier-phase data based on Extended Kalman Filter. The software-based simulation is performed and achieved meter-level precision for absolute navigation and millimeter-level precision for relative navigation. The absolute and relative accuracies at steady state are about 0.77m and 4mm respectively (3D, r.m.s.). In addition, Integer ambiguity algorithm (LAMBDA method) improves simulation performances.

  • PDF

A Highly Secure Identity-Based Authenticated Key-Exchange Protocol for Satellite Communication

  • Yantao, Zhong;Jianfeng, Ma
    • Journal of Communications and Networks
    • /
    • 제12권6호
    • /
    • pp.592-599
    • /
    • 2010
  • In recent years, significant improvements have been made to the techniques used for analyzing satellite communication and attacking satellite systems. In 2003, a research team at Los Alamos National Laboratory, USA, demonstrated the ease with which civilian global positioning system (GPS) spoofing attacks can be implemented. They fed fake signals to the GPS receiver so that it operates as though it were located at a position different from its actual location. Moreover, Galileo in-orbit validation element A and Compass-M1 civilian codes in all available frequency bands were decoded in 2007 and 2009. These events indicate that cryptography should be used in addition to the coding technique for secure and authenticated satellite communication. In this study, we address this issue by using an authenticated key-exchange protocol to build a secure and authenticated communication channel for satellite communication. Our protocol uses identity-based cryptography. We also prove the security of our protocol in the extended Canetti-Krawczyk model, which is the strongest security model for authenticated key-exchange protocols, under the random oracle assumption and computational Diffie-Hellman assumption. In addition, our protocol helps achieve high efficiency in both communication and computation and thus improve security in satellite communication.

천측 항법 시스템의 수직 방향 결정 (Determination of Local Vortical in Celestial Navigation Systems)

  • 석병석;유준
    • 제어로봇시스템학회논문지
    • /
    • 제13권1호
    • /
    • pp.72-78
    • /
    • 2007
  • Determination of the local vertical is not trivial for a moving vehicle and in general will require corrections for the Earth geophysical deflection. The vehicle's local vertical can be estimated by INS integration with initial alignment in SDINS(Strap Down INS) system. In general, the INS has drift error and it cause the performance degradation. In order to compensate the drift error, GPS/INS augmented system is widely used. And in the event that GPS is denied or unavailable, celestial navigation using star tracker can be a backup navigation system especially for the military purpose. In this celestial navigation system, the vehicle's position determination can be achieved using more than two star trackers, and the accuracy of position highly depends on accuracy of local vertical direction. Modern tilt sensors or accelerometers are sensitive to the direction of gravity to arc second(or better) precision. The local gravity provides the direction orthogonal to the geoid and, appropriately corrected, toward the center of the Earth. In this paper the relationship between direction of center of the Earth and actual gravity direction caused by geophysical deflection was analyzed by using precision orbit simulation program embedded the JGM-3 geoid model. And the result was verified and evaluated with mathematical gravity vector model derived from gravitational potential of the Earth. And also for application purpose, the performance variation of pure INS navigation system was analyzed by applying precise gravity model.

Autonomous Real-time Relative Navigation for Formation Flying Satellites

  • Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • 제26권1호
    • /
    • pp.59-74
    • /
    • 2009
  • Relative navigation system is presented using GPS measurements from a single-channel global positioning system (GPS) simulator. The objective of this study is to provide the real-time inter-satellite relative positions as well as absolute positions for two formation flying satellites in low earth orbit. To improve the navigation performance, the absolute states are estimated using ion-free GRAPHIC (group and phase ionospheric correction) pseudo-ranges and the relative states are determined using double differential carrier-phase data and singled-differential C/A code data based on the extended Kalman filter and the unscented Kalman filter. Furthermore, pseudo-relative dynamic model and modified relative measurement model are developed. This modified EKF method prevents non-linearity of the measurement model from degrading precision by applying linearization about absolute navigation solutions not about the priori estimates. The LAMBDA method also has been used to improve the relative navigation performance by fixing ambiguities to integers for precise relative navigation. The software-based simulation has been performed and the steady state accuracies of 1 m and 6 mm ($1{\sigma}$ of 3-dimensional difference errors) are achieved for the absolute and relative navigation using EKF for a short baseline leader/follower formation. In addition, the navigation performances are compared for the EKF and the UKF for 10 hours simulation, and relative position errors are mm-level for the two filters showing the similar trends.

저궤도 위성체의 모델링 및 자세제어 기법에 관한 연구 (A Study on Modelling and Attitude Control Techniques of LEO Satellite)

  • 노영환
    • 전자공학회논문지SC
    • /
    • 제46권6호
    • /
    • pp.9-13
    • /
    • 2009
  • 반작용과 자이로를 사용하는 저궤도 위성체의 3축 제어에서 반작용휠은 휠 속도나 운동량으로 제어토크를 만들고 자이로는 자세각과 자세각속도를 측정한다. 본 논문에서 저궤도 위성체의 다이나믹 모델링은 기본적인 본체만을 고려한 강체에 태양전지판 등을 고려한 연성체의 회전운동방정식과 반작용휠로 구성된다. 강인제어기$(H_\infty)$는 외란에 의한 모델이 가변될 수 있는 강체 및 연성체를 포함한 플랜트를 안정화시키기 위해 적용하였으며, 기존 저궤도 위성체를 안정화시키기 위해 사용된 PI 제어기와 성능을 비교하여 자세제어에 필요한 위상제어의 우수성을 보여주는데 있다.

다단연소사이클 엔진 시스템 기술검증시제 연소성능 평가 (Combustion Characteristics of Technology Demonstration Model for Staged Combustion Cycle Engine)

  • 임지혁;우성필;전준수;이정호;이광진;한영민
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.108-111
    • /
    • 2017
  • 정지궤도용 우주발사체에는 고성능 상단엔진이 필수적이며 높은 비추력을 가지는 다단연소사이클 엔진이 적합하다. 터보펌프, 예연소기, 연소기, 공급계 시스템으로 구성된 9톤급 다단연소사이클 엔진 시스템의 기술검증시제를 제작하여 나로우주센터 3단 엔진 연소시험설비에서 3초 지상연소시험을 수행하였다. 엔진 시스템의 시동, 점화, 연소 및 종료가 정상적으로 수행되었으며 주요 성능 변수를 평가하였다.

  • PDF

Accuracy Analysis of Predicted CODE GIM in the Korean Peninsula

  • Ei-Ju Sim;Kwan-Dong Park;Jae-Young Park;Bong-Gyu Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권4호
    • /
    • pp.423-430
    • /
    • 2023
  • One recent notable method for real-time elimination of ionospheric errors in geodetic applications is the Predicted Global Ionosphere Map (PGIM). This study analyzes the level of accuracy achievable when applying the PGIM provided by the Center for Orbit Determination of Europe (CODE) to the Korean Peninsula region. First, an examination of the types and lead times of PGIMs provided by the International GNSS Service (IGS) Analysis Center revealed that CODE's two-day prediction model, C2PG, is available approximately eight hours before midnight. This suggests higher real-time usability compared to the one-day prediction model, C1PG. When evaluating the accuracy of PGIM by assuming the final output of the Global Ionosphere Map (GIM) as a reference, it was found that on days with low solar activity, the error is within ~2 TECU, and on days with high solar activity, the error reaches ~3 TECU. A comparison of the errors introduced when using PGIM and three solar activity indices-Kp index, F10.7, and sunspot number-revealed that F10.7 exhibits a relatively high correlation coefficient compared to Kp-index and sunspot number, confirming the effectiveness of the prediction model.