• 제목/요약/키워드: Orbit Determination Accuracy

검색결과 89건 처리시간 0.021초

실시간 응용을 위한 GPS 정밀 궤도력 결정 (PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS)

  • 임형철;박필호;박종욱;조정호;안용원
    • Journal of Astronomy and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.129-136
    • /
    • 2001
  • GPS (Global Positioning System)를 이용한 정밀 응용분야에 있어 위성의 궤도력과 지구자전 상수 (Earth Orientation Parameter, EOP)의 정밀도는 매우 중요한 요소이다. 특히, GPS를 이용한 대기강시 등 신속한 정밀자료처리가 요구되는 응용분야는 실시간 또는 정밀하게 예측된 위성의 궤도력과 EOP를 필요로 한다. 이를 위해 IGS (International GPS Service)는 매일 3시, 15시 (UTC)에 IGU (lGS Ultra Rapid Product)를 생성하여 서비스하고 있다. IGU는 48시간의 정밀 궤도력과 EOP로 구성되어 있는데, 처음 24시간은 관측한 데이터를 처리하여 산출하고 다음 24시간은 예측을 통해서 산출한 값으로 이루어져 있다. 본 논문에서는 독자적인 URP (Ultra Rapid Product)를 산출하기 위한 프로세싱 전략을 수립하고 타당성을 검증하였다. 이를 위해 32개 IGS 관측소의 48시간 관측 자료를 처리하여 URP를 산출하고, 그 결과를 IGS에서 제공하는 여러 정밀 궤도력 및 EOP와 비교하였다.

  • PDF

확장칼만필터를 이용한 인공위성 도플러 추적자료의 처리와 궤도 결정 (EXTENDED KALMAN FILTERING OF SATELLITE DOPPLER TRACKING DATA AND IT'S APPLICATION TO ORBIT DETERMINATION PROBLEMS)

  • 김동규;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • 제12권1호
    • /
    • pp.143-156
    • /
    • 1995
  • 저고도 위성을 지향성 아테나로 추적하면서 위성의 공전에 의한 도플러 효과를 관측할 수 있다. 도플러 추적자료를 확장 칼만 필터의 알고리즘을 이용하여 처리함으로써 실시간으로 위성의 궤도를 결정할 수 있다. 본 연구에서는 전파연구소에서 관측한 NOAA-11호의 도플러 추적자료를 확장 칼만 필터의 알코리즘을 이용하여 궤도요소를 구해 보았고 알고리즘의 정밀도와 신뢰도를 알아 보았다.

  • PDF

Tracking Capability Analysis of ARGO-M Satellite Laser Ranging System for STSAT-2 and KOMPSAT-5

  • Lim, Hyung-Chul;Seo, Yoon-Kyung;Na, Ja-Kyung;Bang, Seong-Cheol;Lee, Jin-Young;Cho, Jung-Hyun;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권3호
    • /
    • pp.245-252
    • /
    • 2010
  • Korea Astronomy and Space Science Institute (KASI) has developed a mobile satellite laser ranging (SLR) system called ARGO-M since 2008 for space geodesy research and precise orbit determination technologies using SLR with mm level accuracy. ARGO-M is capable of night tracking and daylight tracking for which requires spatial, spectral and time filters due to high background noises. In this study, characteristics and specifications of ARGO-M are discussed and its tracking capabilities of night and daylight tracking are analyzed for STSAT-2B and KOMPSAT-5 through link budget. Additionally false alarm and signal detection probabilities are also analyzed depending on spectral and time filters for daylight tracking for these satellites.

고해상도 위성영상의 센서모델링을 위한 대기 및 속도 보정 (Atmospheric Correction and Velocity Aberration for Physical Sensor Modeling of High-Resolution Satellite Images)

  • 오재홍;이창노
    • 한국측량학회지
    • /
    • 제29권5호
    • /
    • pp.519-525
    • /
    • 2011
  • High-resolution earth-observing satellites acquire substantial amount of geospatial images. In addition to high image quality, high-resolution satellite images (HRSI) provide unprecedented direct georegistration accuracy, which have been enabled by accurate orbit determination technology. Direct georegistration is carried out by relating the determined position and attitude of camera to the ground target, i.e., projecting an image point to the earth ellipsoid using the collinearity equation. However, the apparent position of ground target is displaced due to the atmosphere and satellite velocity causing significant georegistration bias. In other words, optic ray from the earth surface to satellite cameras at 400~900km altitude refracts due to the thick atmosphere which is called atmospheric refraction. Velocity aberration is caused by high traveling speed of earth-observing satellites, approximately 7.7 km/s, relative to the earth surface. These effects should be compensated for accurate direct georegistration of HRSI. Therefore, this study presents the equation and the compensation procedure of atmospheric refraction and velocity aberration. Then, the effects are simulated at different image acquisition geometry to present how much bias is introduced. Finally, these effects are evaluated for Quickbird and WorldView-1 based on the physical sensor model.

반사타겟 좌표 및 오차정보를 이용한 세종 VLBI IVP 위치계산 (Estimation of Sejong VLBI IVP Point Using Coordinates of Reflective Targets with Their Measurement Errors)

  • 홍창기;배태석;이상오
    • 한국측량학회지
    • /
    • 제38권6호
    • /
    • pp.717-723
    • /
    • 2020
  • VLBI, SLR, DORIS, GNSS와 같은 우주측지기술 사이의 3차원 벡터를 결정하는 작업은 ITRF에 중요한 요소이다. 따라서 각각의 우주측지기술에 해당되는 IVP를 정확하게 계산할 필요가 있다. 본 연구에서는 기존 모델에 비해 업데이트된 수학모델을 사용하여 세종시에 위치한 VLBI의 IVP 위치를 계산함으로써 계산의 효율과 신뢰성을 높였다. 관측값으로는 안테나에 부착된 반사타겟의 좌표가 사용되었으며 이때 관측오차크기는 1.5 mm로 설정하였다. 조정계산을 통해 VLBI IVP 좌표와 정확도를 계산했으며 기존 연구에서 제시한 값과 비교했을 때 성공적으로 계산이 된 것으로 판단된다. 하지만 실제 관측오차가 고려된 VLBI IVP를 계산하기 위해서는 향후 VLBI IVP 계산을 위한 추가적인 지상측량이 필요하다.

Beacon GPS를 이용한 수치지도 갱신에 관한 연구 (A Study on Updating of Digital Map using Beacon GPS)

  • 윤부열;문두열;홍순헌
    • 지구물리
    • /
    • 제9권4호
    • /
    • pp.387-395
    • /
    • 2006
  • 현재 우리나라에서는 국가 기본도를 비롯하여 여러 축척의 수치지도가 제작되어있다. 그러나 현재의 수치지도는 항공사진측량 또는 위성영상을 이용하여 신규제작이나 수정․갱신이 이루어지고 있지만, 수시로 변화하는 지형. 지물에 대한 즉각적인 수정이나 갱신을 항기에는 많은 어려움이 있다. 이에 따른 대안으로 GPS 측위방법을 이용하여 수치지도 수정 갱신에 요구하는 측위 정확도를 제시와 사용자 편의를 제공하고자 한다. 그러나 정확한 위치를 GPS만을 가지고 획득하는 것은 GPS가 받는 위성신호 오차 주위 환경의 영향으로 그 위치 오차가 상당히 크게 발생할 수 있다. 약 20,183km 상의 고도 위에 있는 위성에서 받는 위치신호 덕분에 기존 방법의 가장 큰 문제점이었던 누적오차를 줄이기는 하였지만, 높은 빌딩들 사이, 나무가 너무 울창한 숲 등과 같은 위성에서 위치 신호를 받지 못하는 지역이 발생하게 된다. 또한 GPS 위성의 GDOP(Geometry Dilution of Precision)이나 주기적으로 바뀌는 위성궤도 때문에 위치를 연산하는데 문제점이 발생하게 된다. 이러한 문제점의 해결 및 정확한 위치결정을 위해서는 DGPS (Differential GPS)가 필수적이다. 따라서 본 연구에서는 여러 정확성을 향상시키길 위해 DGPS 방법 중 가장 편리한 방법인 해상위치결정용 Radio Beacon 수신기를 적용함으로써, 차량항법의 정확도를 향상시키고, 각종 측량에 응용하여 광범위한 지역을 신속히 측량할 수 있는 방법을 제안하였다. 본 연구에서는 여러 DGPS 방법 중 비교적 저렴하고 단독으로 측량이 가능한 Beacon GPS를 이용하여 신속한 수치지도 수정 및 갱신 작업 방안을 제시 하고자 한다.

  • PDF

Study on the Optoelectronic Design for Korean Mobile Satellite Laser Ranging System

  • Lim, Hyung-Chul;Bang, Seong-Cheol;Yu, Sung-Yeol;Seo, Yoon-Kyung;Park, Eun-Seo;Kim, Kwang-Dong;Nah, Ja-Kyoung;Jang, Jeong-Gyun;Jang, Bi-Ho;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권2호
    • /
    • pp.155-162
    • /
    • 2011
  • Korea Astronomy and Space Science Institute has been developing one mobile and one stationary satellite laser ranging system for the space geodesy research and precise orbit determination since 2008, which are called as ARGO-M and ARGO-F, respectively. They will be capable of daytime laser ranging as well as nighttime and provide the accurate range measurements with millimeter level precision. Laser ranging accuracy is mostly dependent on the optics and optoelectronic system which consists of event timer, optoelectronic controller and photon detectors in the case of ARGO-M. In this study, the optoelectronic system of ARGO-M is addressed and its critical design is also presented. Additionally, the experiment of the integrated optoelectronic system was performed in the laboratory to validate the functional operation of each component and its results are analyzed to investigate ARGO-M performance in advance.

별 추적기 알고리즘을 활용한 위성 자율항법 연구 (Research of Satellite Autonomous Navigation Using Star Sensor Algorithm)

  • 김현승;현철;이호진;김동건
    • 우주기술과 응용
    • /
    • 제4권3호
    • /
    • pp.232-243
    • /
    • 2024
  • 행성 탐사를 포함한 우주에서의 다양한 임무를 수행하기 위해 인공위성의 궤도상에서의 실시간 위치 추정은 임무 수행 성공률과 직결되기 때문에 매우 중요한 요소이다. 이러한 위성 자율항법을 위한 연구로써 본 논문에서는 별 추적기 2대를 기반으로 별센서 알고리즘을 활용하여 위성의 자세를 추정하고, 지구센서로 부터 획득한 위성의 고도 정보를 이용하여 ECI(earth-centered inertial) 좌표계 상에서의 위성 위치를 실시간으로 추정하는 기법을 연구하였다. 별센서 알고리즘을 구현을 위해 시뮬레이터를 구성하고 논문에서 제시한 기법을 통해 추정한 위성의 위치 오차를 분석하였다. 렌즈 왜곡, 중심점 찾기 알고리즘 오류 등으로 인해 자세 추정 오차의 평균은 롤방향으로 2.6 rad 수준이며, 위치 오차는 자세 오차의 반영에 따라 고도 방향으로 평균 516 m의 오차가 발생함을 확인하였다. 제시한 위성 자세 및 위치 추정 기법을 활용하여 별센서 성능 분석 및 위치 추정 정확도 향상에 기여할 것으로 기대된다.

인공위성 레이저추적 시스템(ARGO-M) 개발 현황 (STATUS AND PROGRESS OF ARGO-M SYSTEM DEVELOPMENT)

  • 박은서;유성열;임형철;방승철;서윤경;박장현;조중현;박종욱;나자경;장정균;장비호;김광동;김병인;박철훈;이성휘;함상용;손영수
    • 천문학논총
    • /
    • 제27권3호
    • /
    • pp.49-59
    • /
    • 2012
  • KASI (Korea Astronomy and Space Science Institute) has developed an SLR (Satellite Laser Ranging) system since 2008. The name of the development program is ARGO (Accurate Ranging system for Geodetic Observation). ARGO has a wide range of applications in the satellite precise orbit determination and space geodesy research using SLR with mm-level accuracy. ARGO-M (Mobile, bistatic 10 cm transmitting/40 cm receiving telescopes) and ARGO-F (Fixed stationary, about 1 m transmitting/receiving integrated telescope) SLR systems development will be completed by 2014. In 2011, ARGO-M system integration was completed. At present ARGO-M is in the course of system calibration, functionality, and performance tests. It consists of six subsystems, OPS (Optics System), TMS (Tracking Mount System), OES (Opto-Electronic System), CDS (Container-Dome System), LAS (Laser System) and AOS (ARGO Operation System). In this paper, ARGO-M system structure and integration status are introduced and described.