• Title/Summary/Keyword: Orbit Design

Search Result 399, Processing Time 0.026 seconds

Development of OWL Scheduler (OWL 스케줄러 개발)

  • Im, Hong-Seo;Park, Seon-Yeop;Kim, Jae-Hyeok;Choe, Jin;Jo, Jung-Hyeon;Lee, Jeong-Ho;Jin, Ho;Geum, Gang-Hun;Park, Yeong-Sik;Bae, Yeong-Ho;Choe, Yeong-Jun;Mun, Hong-Gyu;Park, Jang-Hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.221.2-221.2
    • /
    • 2012
  • 우주물체 전자광학 감시체계(OWL: Optical Wide-field Patrol)는 관측소들의 자동운영을 통한 인공위성의 궤도정보추출이 목적이다. 이를 위해 각각의 관측소에서 매일 밤 운영되어야 하는 관측명령을 자동으로 생성하는 스케줄러를 개발하였다. 스케줄러는 OWL 본부가 설치될 한국천문연구원의 NOS(Network Operating System) 서버에 설치 운영된다. 스케줄러는 사용자가 정한 관측대상 인공위성의 관측우선순위와 OC(Orbit Calculation) 서브시스템이 제공한 위성궤도정보를 바탕으로, 시간에 따른 관측수행내용을 기록한 관측명령서(OCF: Observation Command File)를 작성한다. 작성된 OCF는 각 관측소가 관측을 시작하기 전까지 해당 관측소로 전달되며, 관측소는 OCF를 바탕으로 관측을 수행하게 된다. 스케줄러는 "제한조건반영" 및 "OCF작성" 등 2부분으로 구성된다. "제한조건반영"은 관측시스템의 특징을 스케줄러에 반영하는 단계로써 시야각 등 광학계의 특징, 필터 등 주변 장비의 특징, CCD 카메라의 노출대기시간 등 검출기의 특징 등이 이에 포함된다. 사용자는 장비의 교체 및 개선 등 관측시스템 변경이 발생하는 경우 "제한조건반영"에 이를 적용함으로써 스케줄러가 새로운 시스템에 쉽게 적용할 수 있다. "OCF작성"은 "제한조건반영"의 내용을 바탕으로 관측대상위성을 선정하는 , 위성 관측 구간 중 최대한 많은 노출 횟수를 산출하는 , 한 장의 영상에서 최대한 많은 궤도 정보를 획득하기 위한 등 3개의 알고리즘에 의해 OCF를 작성한다.

  • PDF

An Approach to the Optimization of Catalyst-bed L/D Configuration in 70 N-class Hydrazine Thruster (70 N급 하이드라진 추력기의 촉매대 형상(L/D) 최적화 연구)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.30-37
    • /
    • 2013
  • A ground hot-firing test was conducted to take out the optimal design configurations for the catalyst bed of liquid-monopropellant hydrazine thruster which could be used for primary engine or attitude control thruster of space vehicles. Performance characteristics with the variation of thrust-chamber length are investigated in terms of thrust, specific impulse, chamber pressure, characteristic velocity, and hydrazine decomposition rate. Additionally, the correlations between propellant-supply pressure and performance parameters are given. As results, increase of catalyst-bed length leads to performance degradation in this test condition, and also decreases propellant consumption efficiency with the supply pressure variation.

A Study on the Verifying Structural Safety of Satellite Structure by Coupled Load Analysis (연성하중해석을 통한 위성구조체의 구조안정성 검증 연구)

  • Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Chang-Ho;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • Satellite structure should be designed to support safely the payload and several actuators under launch and on-orbit environments. After the configuration design of satellite, the structural analysis is performed using quasi-static load provided by launch vehicle manufacturer for detail design of satellite. In order to verify the safety of satellite structure designed using quasi-static loads, launch vehicle manufacturer performs coupled load analysis with satellite and launch vehicle models. For developing satellite, satellite model was reduced into the Craig-Bampton model for coupled load analysis, and delivered to the launch vehicle manufacturer. Launch vehicle manufacturer have done the coupled load analysis, and offered the acceleration and displacement results to the satellite manufacturer. From the analysis results, we have confirmed that satellite is designed safely and there is no possibility of interference and conflict in the inner/outer side of satellite.

Design and manufacture of eyeball protrusion measuring device using white light scanning interferometer (백색광 간섭계를 이용한 안구 돌출 측정 장치 설계 및 제작)

  • Chang, Jung-soo;Kim, Young-kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2019
  • The relative position of the orbital eye can be a criterion for evaluating several pathological conditions. It is especially useful to diagnose orbital fractures, thyroid eye disease, orbital tumors and to evaluate the outcome of medication and surgical treatment. Hertel and Naugle are representative measurement tools used to measure eyeball protrusion values, and have different measurement results, such as fixed orbits, every time they are inspected, even if the same inspector repeatedly measures them. Even with the same calibrator, it is inevitable that different manufacturers will change the design of the stationary part of the orbit, causing the surveyor to make a measurement error. In this paper, we designed and fabricated a protrusion measuring device using a white light interferometer and measured the protrusion of the human eye and found that the precision and repeatability were significantly higher than the manual measurement method.

Analysis of Spatial Correlation and Linear Modeling of GNSS Error Components in South Korea (국내 GNSS 오차 성분별 공간 상관성 및 선형 모델링 특성 분석)

  • Sungik Kim;Yebin Lee;Yongrae Jo;Yunho Cha;Byungwoon Park;Sul Gee Park;Sang Hyun Park
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.3
    • /
    • pp.221-235
    • /
    • 2024
  • Errors included in Global Navigation Satellite System (GNSS) measurements degrade the performance of user position estimation but can be mitigated by spatial correlation properties. Augmentation systems providing correction data can be broadly categorized into State Space Representation (SSR) and Observation Space Representation (OSR) methods. The satellite-based cm-level augmentation service based on the SSR broadcasts correction data via satellite signals, unlike the traditional Real-Time Kinematic (RTK) and Network RTK methods, which use OSR. To provide a large amount of correction data via the limited bandwidth of the satellite communication, efficient message structure design considering service area, correction generation, and broadcast intervals is necessary. For systematic message design, it is necessary to analyze the influence of error components included in GNSS measurements. In this study, errors in satellite orbits, satellite clocks for GPS, Galileo, BeiDou, and QZSS satellite constellations ionospheric and tropospheric delays over one year were analyzed, and their spatial decorrelations and linear modeling characteristics were examined.

Conceptual Design Analysis of Satellite Communication System for KASS (KASS 위성통신시스템 개념설계 분석)

  • Sin, Cheon Sig;You, Moonhee;Hyoung, Chang-Hee;Lee, Sanguk
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2016
  • High-level conceptual design analysis results of satellite communication system for Korea augmentation satellite system (KASS) satellite communication system, which is a part of KASS and consisted of KASS uplink Stations and two leased GEO is presented in this paper. We present major functions such as receiving correction and integrity message from central processing system, taking forward error correction for the message, modulating and up converting signal and conceptual design analysis for concepts for design process, GEO precise orbit determination for GEO ranging that is additional function, and clock steering for synchronization of clocks between GEO and GPS satellites. In addition to these, KASS requires 2.2 MHz for SBAS Augmentation service and 18.5 MHz for Geo-ranging service as minimum bandwidths as a results of service performance analysis of GEO ranging with respect to navigation payload(transponder) RF bandwidth is presented. These analysis results will be fed into KASS communication system design by carrying out final analysis after determining two GEOs and sites of KASS uplink stations.

OPTIMAL TRAJECTORY CORRECTION MANEUVER DESIGN USING THE B-PLANE TARGETING METHOD FOR FUTURE KOREAN MARS MISSIONS (B-평면 조준법을 이용한 화성 탐사선의 궤적 보정을 위한 최적의 기동 설계)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Choi, Joon-Min;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.4
    • /
    • pp.451-462
    • /
    • 2005
  • Optimal Trajectory Correction Maneuver (TCM) design algorithm has been developed using the B-plane targeting method for future Korean Mars missions. For every-mission phase, trajectory informations can also be obtained using this developed algorithms which are essential to design optimal TCM strategy. The information were computed under minimum requiring perturbations to design Mars missions. Spacecraft can not be reached at designed aim point because of unexpected trajectory errors, caused by many perturbations and errors due to operating impulsive maneuvers during the cruising phase of missions. To maintain spacecraft's appropriate trajectory and deliver it to the designed aim point, B-plane targeting techniques are needed. A software NPSOL is used to solve this optimization problem, with the performance index of minimizing total amount of TCM's magnitude. And also executing time of maneuvers on be controlled for the user defined maneuver number $(1\~5)$ of TCMs. The constraints, the Mars arrival B-plane boundary conditions, are formulated for the problem. Results of this work show the ability to design and analyze overall Mars missions, from the Earth launch phase to Mars arrival phase including capture orbit status for future Korean Mars missions

AN ORBIT PROPAGATION SOFTWARE FOR MARS ORBITING SPACECRAFT (화성 근접 탐사를 위한 우주선의 궤도전파 소프트웨어)

  • Song, Young-Joo;Park, Eun-Seo;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Kim, Han-Dol;Choi, Jun-Min;Kim, Hak-Jung;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.351-360
    • /
    • 2004
  • An orbit propagation software for the Mars orbiting spacecraft has been developed and verified in preparations for the future Korean Mars missions. Dynamic model for Mars orbiting spacecraft has been studied, and Mars centered coordinate systems are utilized to express spacecraft state vectors. Coordinate corrections to the Mars centered coordinate system have been made to adjust the effects caused by Mars precession and nutation. After spacecraft enters Sphere of Influence (SOI) of the Mars, the spacecraft experiences various perturbation effects as it approaches to Mars. Every possible perturbation effect is considered during integrations of spacecraft state vectors. The Mars50c gravity field model and the Mars-GRAM 2001 model are used to compute perturbation effects due to Mars gravity field and Mars atmospheric drag, respectively. To compute exact locations of other planets, JPL's DE405 ephemerides are used. Phobos and Deimos's ephemeris are computed using analytical method because their informations are not released with DE405. Mars Global Surveyor's mapping orbital data are used to verify the developed propagator performances. After one Martian day propagation (12 orbital periods), the results show about maximum ${\pm}5$ meter errors, in every position state components(radial, cross-track and along-track), when compared to these from the Astrogator propagation in the Satellite Tool Kit. This result shows high reliability of the developed software which can be used to design near Mars missions for Korea, in future.

Preliminary Design of the NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Park, Chan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.102-102
    • /
    • 2014
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument onboard NEXTSat-1 which is being developed by KASI. The main scientific targets are nearby galaxies, galaxy clusters, star-forming regions and low background regions in order to study the cosmic star formation history in local and distant universe. After the Preliminary Design Review, we have fixed major specifications of the NISS. The off-axis optical design with 15cm apertureis optimized to obtain a wide field of view ($2deg.{\times}2deg.$), while minimizing the sensitivity loss. The opto-mechanical structure of the NISS was designed to be safe enough to endure in the launching condition as well as the space environment. The tolerance analysis was performed to cover the wide wavelength range from 0.95 to $3.8{\mu}m$ and to reduce the degradation of optical performance due to thermal variation at the target temperature, 200K. The $1k{\times}1k$ infrared sensor is operated in the dewar at 80K stage. We confirmed that the NISS can be cooled down to below 200K in the nominal orbit through a radiative cooling. Here, we report the preliminary design of the NISS.

  • PDF

The Reliability Design Method According to the Experimental Study of Components and Materials of Railway Rail Fastening System (철도용 레일체결장치 부품.소재의 실험적 연구를 통한 신뢰성 설계 방안)

  • Kim, Hyo-San;Park, Joon-Hyung;Kim, Myung-Ryule;Park, Kwang-Hwa;Lee, Dal-Jae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2090-2100
    • /
    • 2011
  • Railway rail fastening system is the critical device which gives big influences to not only the vehicle driving stability and the orbit's structural stability against the impulsive load, but also the noise vibration and the ride comfort. As a part of the low-carbon green growth, the importance of the railroad industry is getting highlights on its excellent energy-efficiency and eco-friendliness. However, so far the Korea's domestic rail fastening system technology is not so good and the technical reliance to abroad is very heavy. In this study, we conducted comparative analysis on the rail fastening system with new and used one of the same type. And those systems are imported by Seoul Metro and are being used by it. With this basis, we developed the components and the materials and then, established the durability assessment methods appropriate to the Korean domestic circumstances. And through the reliability qualification test on the 7 parts of the rail fastening system, we've improved the reliability and guaranteed the 15 years of service lifetime. ($B_{10}Life15$) Establishment and standardization of Reliability Standard on the parts of the rail fastening system such as anti-vibration pads, guide-plate, screw spike made it possible to perform the internationally fair assessment. And it is thought that we can satisfy the manufactures' and consumers' needs of cost-cutting and qualification security by shortening of assessment period on rail fastening system.

  • PDF