Browse > Article
http://dx.doi.org/10.5140/JASS.2005.22.4.451

OPTIMAL TRAJECTORY CORRECTION MANEUVER DESIGN USING THE B-PLANE TARGETING METHOD FOR FUTURE KOREAN MARS MISSIONS  

Song, Young-Joo (Dept. of Astronomy and Space Science, Yonsei University)
Park, Eun-Seo (Dept. of Astronomy and Space Science, Yonsei University)
Yoo, Sung-Moon (Dept. of Astronomy and Space Science, Yonsei University)
Park, Sang-Young (Dept. of Astronomy and Space Science, Yonsei University)
Choi, Kyu-Hong (Dept. of Astronomy and Space Science, Yonsei University)
Yoon, Jae-Cheol (Korea Aerospace Research Institute)
Yim, Jo-Ryeong (Korea Aerospace Research Institute)
Choi, Joon-Min (Korea Aerospace Research Institute)
Kim, Byung-Kyo (Korea Aerospace Research Institute)
Publication Information
Journal of Astronomy and Space Sciences / v.22, no.4, 2005 , pp. 451-462 More about this Journal
Abstract
Optimal Trajectory Correction Maneuver (TCM) design algorithm has been developed using the B-plane targeting method for future Korean Mars missions. For every-mission phase, trajectory informations can also be obtained using this developed algorithms which are essential to design optimal TCM strategy. The information were computed under minimum requiring perturbations to design Mars missions. Spacecraft can not be reached at designed aim point because of unexpected trajectory errors, caused by many perturbations and errors due to operating impulsive maneuvers during the cruising phase of missions. To maintain spacecraft's appropriate trajectory and deliver it to the designed aim point, B-plane targeting techniques are needed. A software NPSOL is used to solve this optimization problem, with the performance index of minimizing total amount of TCM's magnitude. And also executing time of maneuvers on be controlled for the user defined maneuver number $(1\~5)$ of TCMs. The constraints, the Mars arrival B-plane boundary conditions, are formulated for the problem. Results of this work show the ability to design and analyze overall Mars missions, from the Earth launch phase to Mars arrival phase including capture orbit status for future Korean Mars missions
Keywords
Mars; mission design; optimal trajectory correction maneuver;
Citations & Related Records
연도 인용수 순위
  • Reference
1 백지훈 2001, 석사학위논문, 연세대학교
2 송영주, 유성문, 박은서, 박상영, 최규홍, 윤재철, 임조령, 김방엽, 김한돌, 최준민, 김병교 2004a, 한국우주과학회지, 21, 153
3 송영주, 박은서, 유성문, 박상영, 최규홍, 윤재철, 임조령, 김한돌, 최준민, 김학정, 김병교 2004b, 한국우주과학회지, 21, 351
4 유성문, 송영주, 박은서, 박상영, 최규홍, 윤재철, 임조령, 김방엽, 김한돌, 최준민, 김병교 2003, 한국우주과학회지, 20, 299
5 이성섭 2002, 석사학위논문, 연세대학교
6 Beerer, J. G. & Dallas S. S. 1994, Mars Golbal Surveyor Trajectory Characteristic Documents (California: JPL), pp.5.1-5.23
7 Brown, C. D. 1998, Spacecraft Mission Design Second Edition (Virginia: AIAA), pp.95-122
8 Hale, F. J. 1994, Introduction to Space Flight (New Jersey: Prentice Hall), pp.83-124
9 Hechler, M., & Yanez A. 1999, Mars Express Consolidated Reports on Mission Analysis (Darmstadt:ESOC), pp.30-35
10 Hechler, M. 2004, private communication
11 Hong, P. E., Kent P. D., & Vallado, C. A. 1992, Interplanetary Program To Optimize Simulated Trajectories (IPOST) Volume I User's Guide (Colorado: Martin Marietta Corp.), pp.1-69
12 Kohlhase, C. E. 1969, J. of Spacecraft and Rocket, 6, 537   DOI
13 Mase, R. A. 1999, Update to Mars Coordinate Frame Definitions (California: JPL), pp.6-23
14 Sergeyevsky, A. B., Snyder, G. C., & Cunniff R. A. 1983, Interplanetary Mission Design Handbook vol.1 Part 2 (California: JPL), pp.20-22
15 Standish, E. M. 1998, JPL planetary and Lunar Ephemerides, DE405/LE405 (California: JPL), pp.1-6
16 Vallado, D. A., McClain, W. D., & Larson, W. J. 1997, Fundamentals of Astrodynamics and Applications (New York: McGraw-Hill), pp.421-445
17 김해연, 박은서, 송영주, 유성문, 노경민, 박상영, 최규홍, 윤재철, 임조령, 최준민, 김병교 2004, 한국우주과학회지, 21, 361