• Title/Summary/Keyword: Orbit Design

Search Result 398, Processing Time 0.023 seconds

The Oil Film Analysis of Dynamically Loaded proceeding Bearing in Diesel Engine (동하중(動荷重)을 받는 선박용(船舶用) 디젤 엔진의 저널 베어링 유막해석(油膜解析)에 관한 연구(硏究))

  • Cha, Ji-Hyoub;Lee, Sang-Su;Kim, Jeong-Ryul;Kim, Ju-Tae;Kim, Jong-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.160-165
    • /
    • 2005
  • The proceeding bearings of marine diesel engine are affected by dynamic loads from the cylinder gas pressure and the inertia force from the crank mechanism. Oil film must support the load of the shaft and it also must protect the proceeding and the bearings from damage. This study uses Goenka's new curve fit to carry out the theoretical analysis of oil film in proceeding bearings for MAN B&W 12K90MC-C and Hyundai Heavy Industry Co., Ltd HiMSEN H21/32 Engine. The applied engine's analysis results show the behavior of the proceedings in main and crank pin bearings. The results of this study will be the proper criteria for the proceeding bearings design and be available for development of the new technology in the proceeding bearing and for the high strength lining coating.

  • PDF

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.

Active Control of On-board Jitter Isolation for Spacecraft (인공위성의 내부 진동 분리를 위한 능동 제어 연구)

  • Oh, Se-Boung;Bang, Hyo-Choong;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.80-87
    • /
    • 2004
  • Active control of on-orbit spacecraft jitter is a significant problem for future spacecraft mission requiring stringent pointing performance. Jitter is major disturbance source degrading payload pointing performance. Both passive and active jitter isolation techniques have been studied during the last decade. We present active jitter isolation for a model device in this work. The device provides active control capability by 3 degree-of-freedom control of payload in feedback control strategy. Mathematical modeling of the device is pursued which is naturally used for a baseline controller design. Simulation results are used to validate the designed control law.

Space Qualification of Small Satellite Li-ion Battery System for the Secured Reliability (소형인공위성용 리튬이온 배터리시스템의 신뢰성 확보을 위한 우주인증시험)

  • Park, Kyung-Hwa;Yi, Kang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.4
    • /
    • pp.351-359
    • /
    • 2014
  • This paper introduces the lithium ion battery system for LEO(Low Earth Orbit) small satellites. This study proves the reliability of lithium ion batteries applying to the space application. The specifications for lithium ion battery unit are proposed to supply power to the satellite and the overall mechanical design including structural simulation to confirm the reliability of the lithium ion BMS(Battery Management System) under the space environment and launching conditions. The results of structural simulation, functional tests, and space environmental tests show the lithium ion battery system is space qualified. Space qualification of the small satellite battery system to secure reliability of BMS and lithium ion batteries lend credibility for using lithium ion batteries in space application.

KICKER MAGNET MODULATOR IN PLS (포항방사광가속기 킼커 대출력 펄스전원장치)

  • Nam, S.H.;Jeong, S.H.;Han, S.H.;Suh, J.H.;Ha, K.M.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1779-1781
    • /
    • 1997
  • The 2.0 GeV Pohang Light Source (PLS) is consisted of a full energy Linac and a storage ring. Four kicker magnets are installed in the storage ring tunnel to move the stored beam orbit in the storage ring closer to the injected beam from the beam transfer line. The injected beam then falls into the storage ring beam dynamic aperture. A kicker magnet modulator drives all four kicker magnets to maintain field balance and also synchronized kick of the beam. The kicker modulator can handle 2 GeV full energy beam. The kicker magnet modulator is installed in the storage ring tunnel and under stable operation. Specification of the kicker magnet modulator is ${\sim}6.0{\mu}s$ pulse-width, 200 ns flat-top width with ${\pm}0.2%$ regulation, ${\sim}24\;kA$ peak current, and 10 Hz repetition rate. Two thyratron switches (EEV CX-1536AX) are used in the system. In this article, design, and experimental results of the kicker magnet modulator are discussed.

  • PDF

Risk Management of Launch Vehicle Propulsion System (우주 발사체 추진기관의 위험 관리)

  • Cho, Sang-Yeon;Shin, Myung-Ho;Ko, Jung-Hwan;Oh, Seung-Hyub;Park, Jeong-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.3-6
    • /
    • 2007
  • Korea Aerospce Research Institute(KARI) has been developing the first civilian rocket, Korea space launch vehicle (KSLV-I), which can put the small size satellite into designated orbit. Developing launch vehicles contains a lot of uncertainty due to large scale, complexity, and technical difficulty. The uncertainty may become risk in the areas of business and technology which causes schedule delay, cost increase, and design changes of subsystems and components. This study describes the technical risk identification methods using FTA and procedures of planning and implementation of risk assessment and reduction of launch vehicle propulsion system.

  • PDF

The Optimum Design of Optical Heterodyne Receiver used on Optical Sate Ilite Communication under Turbulent Atmosphere (교란 대기하에서 광위성통신용 광헤테로다인 수신기 최적 설계에 관한 연구)

  • 한종석;정진호;김영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.4
    • /
    • pp.28-39
    • /
    • 1993
  • In the international BISDN used satellite, the laser that has large BW has to be used as a carrier for transmitting a lot of visual, vocal, and data information. Interoptical satellite communication has now developed in theoretical and practical aspects. But the optical communication, between satellite and earth station, is hindered by atmospheric absorption, scattering, and turbulence. In this paper, it was supposed that 1Gbps information was transmitted by binary FSK and 50mW AlGaAs semiconductor laser was used as a optical source in the satellite communication link between geosynchronous orbit satellite and earth station. We analyzed the BER and the entire diameter of the noncoherently combined optical heterodyne receiver as el evation angle, and determined the number of the optical heterodyne rece ivers, which is necessary for the BER of the receiver to be less than 10$^{-9}$ by computer simulation under the clear weather condition. It is shown that the BER and the number of the optical heterodyne receivers decrease as the elevation angle increases. In the region used the same number of the optical heterodyne receivers, it is shown that the entire diameter of the receiver increases but the BER decreases as the elevation angle increases.

  • PDF

Transponder Monitoring and Control System for COMS Ka-band Communication Payload (천리안위성 Ka대역 통신탑재체 제어관리시스템(TMC))

  • You, Moon-Hee;Chan, Jung-Won;Lee, Seong-Pal;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.48-53
    • /
    • 2010
  • COMS (Communication, Ocean and Meteorological Satellite), which will be launched in June 23rd, 2010 and located on geostationary orbit at the latitude of $128.2^{\circ}E$, is a multi-function satellite for communications, ocean observation, and meteorology. In order to operate Ka-band communication payload effectively, which is one of the three payloads for COMS, the Transponder Monitoring and Control (TMC) system are necessary in ground systems. In this paper, the concepts and design of the TMC system for COMS Ka-band payload are described.

Average-Current-Mode Control of Pseudo-Continuous Current Mode BUCK-BOOST Type Solar Array Regulator (의사-연속전류모드 벅-부스트 형 태양전력 조절기의 평균전류모드제어)

  • Yang, JeongHwan;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.2
    • /
    • pp.72-75
    • /
    • 2012
  • A solar array makes a Solar Array Regulator (SAR) for Low-Earth-Orbit satellite have different small signal characteristic. Therefore, an Average-Current-Mode (ACM) controller cannot control the BUCK-BOOST type SAR which operates in a current region of the solar array. In this paper, we present the Pseudo-Continuous Current Mode (PCCM) BUCK-BOOST Type SAR which can be controller by the ACM Controller. We explain the circuit operation of the PCCM BUCK-BOOST Type SAR, derive its small signal transfer function and design ACM Controller. Finally, we verify the ACM control of the PCCM BUCK-BOOST Type SAR by using a simulation.

Results Analysis for On-orbit Operation of KOMPSAT-1 Propulsion System (다목적실용위성 1호 추진시스템 궤도운용 결과 분석)

  • 김정수;한조영;진익민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.107-113
    • /
    • 2000
  • Design configuration and performance requirements for KOMPSAT-1 propulsion system were described. Operational results of the propulsion system obtained through the satellite Launch and Early Operation Phase were scrutinized. Performance characteristics of the thrusters which are employed for spacecraft attitude control and the corresponding propellant depletion rate were analysed according to satellite operation modes. Additionally, propellant leakproof and thermal control capability were checked out from the view point of system verification. Propellant depletion rates calculated by PVT method in $\Delta$V maneuvering and each attitude control mode produce the very meaningful results for the prediction of total propellant consumption up to the end of satellite mission life.

  • PDF