• Title/Summary/Keyword: Orbit Design

Search Result 399, Processing Time 0.03 seconds

Staging and Injection Performance Analysis of Small Launch Vehicle Based on KSLV-II (한국형발사체에 기반한 소형발사체의 스테이징 및 투입성능 분석)

  • Jo, Min-Seon;Kim, Jae-Eun;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.155-166
    • /
    • 2021
  • In this paper, design study of a small two-stage launch vehicle is undertaken for the dedicated launch of the Compact Advanced Satellite 500 (CAS500)-class satellite into the Low Earth Orbit (LEO) by modifying the second and third stages of the Korean Space Launch Vehicle II (KSLV-II). Since the KSLV-II has three stages, velocity increment is newly distributed for the two-stage small launch vehicle. For this end, the staging design is carried out for the design parameters such as stage mass ratios, structural coefficients and engine options for each stage followed by trajectory analysis. Investigation of the results provides the combination of design parameters for the small launch vehicle for the dedicated launch of 500 kg-class satellite into LEO.

Effect of perforation patterns on the fundamental natural frequency of microsatellite structure

  • Ahmad M. Baiomy;M. Kassab;B.M. El-Sehily;R.M. El-Kady
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.223-243
    • /
    • 2023
  • There is a burgeoning demand for minimizing the mass of satellites because of its direct impact on reducing launch-to-orbit cost. This must be done without compromising the structure's efficiency. The present paper introduces a relatively low-cost and easily implementable approach for optimizing structural mass to a maximum natural frequency. The natural frequencies of the satellite are of utmost pertinence to the application requirements, as the sensitive electronic instrumentation and onboard computers should not be affected by the vibrations of the satellite structure. This methodology is applied to a realistic model of Al-Azhar University micro-satellite in partnership with the Egyptian Space Agency. The procedure used in structural design can be summarized in two steps. The first step is to select the most favorable primary structural configuration among several different candidate variants. The nominated variant is selected as the one scoring maximum relative dynamic stiffness. The second step is to use perforation patterns reduce the overall mass of structural elements in the selected variant without changing the weight. The results of the presented procedure demonstrate that the mass reduction percentage was found to be 39% when compared to the unperforated configuration that had the same plate thickness. The findings of this study challenge the commonly accepted notion that isogrid perforations are the most effective means of achieving the goal of reducing mass while maintaining stiffness. Rather, the study highlights the potential benefits of exploring a wider range of perforation unit cells during the design process. The study revealed that rectangular perforation patterns had the lowest efficiency in terms of modal stiffness, while triangular patterns resulted in the highest efficiency. These results suggest that there may be significant gains to be made by considering a broader range of perforation shapes and configurations in the design of lightweight structures.

Development and Preliminary Performance Analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging (1m급 인공위성 레이저추적 시스템용 고속·고정밀 추적마운트 개발 및 예비 성능분석)

  • Choi, Man-Soo;Lim, Hyung-Chul;Lee, Sang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.1006-1015
    • /
    • 2016
  • This paper presents preliminary design and performance analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging(SLR) which is development by Korea Astronomy and Space science Institute(KASI). SLR is considered to be the most accurate technique currently available for the precise orbit determination of Earth satellites. The SLR technique measures the time of flight between pulses emitted from laser transmitter and pulses returned from satellites with laser retro-reflector array. It provides millimeter level precision of range measurements between SLR stations and satellites. A fast and high precision Tracking Mount for SLR which is proposed in this research should be capable of day and nighttime laser tracking about the satellites with laser reflectors from 200 km to 36,000 km altitude(geosynchronous orbit). In order to meet this requirement, we performed mechanical design and structural analysis for Tracking Mount. Also we designed the motion control system and conducted pre-performance analysis to obtain good performance results for a fast and high precision Tracking Mount.

On-orbit Thermal Characteristic for Multilayered High Damping Yoke Structure Based on Superelastic Shape Memory Alloy for Passive Vibration Control of Solar Panels (태양전지판의 수동형 제진을 위한 초탄성 형상기억합금 기반 적층형 고댐핑 요크 구조의 궤도상 열적 특성 분석)

  • Min-Young Son;Jae-Hyeon Park;Bong-Geon Chae;Sung-Woo Park;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • In a previous study, a structure of a superplastic yoke consisting of a thin FR4 layer laminated with viscoelastic tape on both sides of a shape memory alloy (SMA) was proposed to reduce residual vibration generated by a deployable solar panel during high motion of a satellite. Damping properties of viscoelastic tapes will change with temperature, which can directly affect vibration reduction performance of the yoke. To check damping performance of the yoke at different temperatures, free damping tests were performed under various temperature conditions to identify the temperature range where the damping performance was maximized. Based on above temperature test results, this paper predicts temperature of the yoke through orbital thermal analysis so that the yoke can have effective damping performance even if it is exposed to an orbital thermal environment. In addition, the thermal design method was described so that the yoke could have optimal vibration reduction performance.

Roll/Yaw Momentum Management Method of Pitch Momentum Biased Spacecraft (피치 모멘텀 바이어스 위성시스템의 롤/요축 모멘텀 제어방식)

  • Rhee, Seung-Wu;Ko, Hyun-Chul;Jang, Woo-Young;Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.7
    • /
    • pp.669-677
    • /
    • 2009
  • In general, the pitch momentum biased system that induces inherently nutational motion in roll/yaw plane, has been adapted for geosynchronous communications satellites. This paper discusses the method of roll attitude control using yaw axis momentum management method for a low earth orbit(LEO) satellite which is a pitch momentum biased system equipped with only two reaction wheels. The robustness of wheel momentum management method with PI-controller is investigated comparing with wheel torque control method. The transfer function of roll/yaw axis momentum management system that is useful for attitude controller design is derived. The disturbance effect of roll/yaw axis momentum management system for attitude control is investigated to identify design parameters such as magnitude of momentum bias and to get the insight for controller design. As an example, the PID controller design result of momentum management system for roll/yaw axis control is provided and the simulation results are presented to provide further physical insight into the momentum management system.

ESD Design and Analysis Tools for LEO SAT (저궤도 위성의 ESD 설계 및 해석도구)

  • Lim, Seong-Bin;Kim, Tae-Youn;Jang, Jae-Woong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.1
    • /
    • pp.68-78
    • /
    • 2009
  • In this paper, the electrostatic charging and discharging mechanism, and its effects in space plasma environment are reviewed and the system design control documents, ESD analysis tools and modelling techniques, and the SPIS program in Europe are introduced. A design of the satellite system against the electrostatic discharge (ESD) effects in space plasma environments is carefully taken into account at the early stage of development. In a view of the space system design, it really depended on the mission of system, electrical and mechanical configuration, system operation, and orbit condition. Behavior of the electrons and the ions in those environments may be occurred the sever problem to the satellite operation. So it is carefully understood for implementation of the satellite system. By this reason, the space environments and its effects have been comprehensively studied in U.S.A and Europe.

  • PDF

Conceptual Design of the RF Links for KASS Satellite Communication System (KASS 위성통신시스템 RF 링크 기본 설계)

  • You, Moonhee;Sin, Cheon Sig
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.12-17
    • /
    • 2016
  • ICAO (International Civil Aviation Organization) recommends the introduction of SBAS (Satellite Based Augmentation System) in 2025, which provides GNSS (Global Navigation Satellite System) correction data and the ranging signal via GEO (geostationary earth orbit) satellites to GNSS users. In this paper, we present the basic design results of the satellite communication system RF link for the Korean SBAS systems, KASS (Korea Augmentation Satellite System) which is going on the development & implementation. KASS RF link was designed in consideration of both the C-band and Ku-band uplinks to meet the international standard requirements for the SBAS system, and identified the minimum EIRP and G/T performance of the KASS uplink station for each frequency band. These analysis results for the RF link design are expected to be used for an effective design of the subsystem specifications for KASS satellite communication system.

Two Axis Attitude Control System Design of Momentum Biased Satellite (모멘텀 바이어스 인공위성의 2축 자세제어 시스템 설계)

  • Lee, Seung-U;Seo, Hyeon-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.40-46
    • /
    • 2006
  • It is required to develop a highly reliable attitude & orbit control system of satellite that is less expensive as the technology of satellite design & integration is recently matured dramatically. To accomodate this kind of needs, the two axis attitude control method for wheel-based momentum-biased satellite system whose momentum bias vector points to a certain direction(sun direction), is developed using simple but reliable sensors and actuator: three axis magnetometer and coarse sun sensor are used as sensors, and magnetic torque bars are used as actuator. Classical PD type controller design methodologies are applied on a satellite system for the two axis control with the proper assumptions. Nonlinear simulation results are included to demonstrate the long term stability and the performance of closed-loop system design results.

Conceptual Design of a Solid State Telescope for Small scale magNetospheric Ionospheric Plasma Experiments

  • Sohn, Jongdae;Lee, Jaejin;Jo, Gyeongbok;Lee, Jongkil;Hwang, Junga;Park, Jaeheung;Kwak, Young-Sil;Park, Won-Kee;Nam, Uk-Won;Dokgo, Kyunghwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.195-200
    • /
    • 2018
  • The present paper describes the design of a Solid State Telescope (SST) on board the Korea Astronomy and Space Science Institute satellite-1 (KASISat-1) consisting of four [TBD] nanosatellites. The SST will measure these radiation belt electrons from a low-Earth polar orbit satellite to study mechanisms related to the spatial resolution of electron precipitation, such as electron microbursts, and those related to the measurement of energy dispersion with a high temporal resolution in the sub-auroral regions. We performed a simulation to determine the sensor design of the SST using GEometry ANd Tracking 4 (GEANT4) simulations and the Bethe formula. The simulation was performed in the range of 100 ~ 400 keV considering that the electron, which is to be detected in the space environment. The SST is based on a silicon barrier detector and consists of two telescopes mounted on a satellite to observe the electrons moving along the geomagnetic field (pitch angle $0^{\circ}$) and the quasi-trapped electrons (pitch angle $90^{\circ}$) during observations. We determined the telescope design of the SST in view of previous measurements and the geometrical factor in the cylindrical geometry of Sullivan (1971). With a high spectral resolution of 16 channels over the 100 keV ~ 400 keV energy range, together with the pitch angle information, the designed SST will answer questions regarding the occurrence of microbursts and the interaction with energetic particles. The KASISat-1 is expected to be launched in the latter half of 2020.

RF Compatibility Design & Verification for the SAR Satellite (SAR 위성의 고주파 호환성 설계 및 검증)

  • Won, Young-Jin;Park, Hong-Won;Moon, Hong-Youl;Woo, Sung-Hyun;Kim, Jin-Hee
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.37-48
    • /
    • 2011
  • Synthetic Aperture Radar(SAR) is a powerful and well established microwave remote sensing technique which enables high resolution measurement of Earth surface independent of weather conditions and sunlight illumination. KARI has been developing the first Korea SAR satellite which is scheduled to be launched in this year. The SAR satellite mainly consists of the bus platform and SAR payload. Most of all, the RF compatible design during the design phase and the verification of the RF compatibility during the testing phase is very important procedure for the in-orbit performance guarantee because the SAR payload radiates high power through the SAR antenna. In this study, the SAR satellite design criteria and verification procedure for the RF compatibility are described. In addition, this paper describes the RF full radiation testing (RF auto-compatibility testing) for the verification of the RF performance robustness, the testing configuration, and the test results.