DOI QR코드

DOI QR Code

Effect of perforation patterns on the fundamental natural frequency of microsatellite structure

  • Ahmad M. Baiomy (Mechanical Engineering Department, Faculty of Engineering, Al Aazhar University) ;
  • M. Kassab (Egyptian Space Agency) ;
  • B.M. El-Sehily (Mechanical Engineering Department, Faculty of Engineering, Al Aazhar University) ;
  • R.M. El-Kady (Mechanical Engineering Department, Faculty of Engineering, Al Aazhar University)
  • Received : 2023.03.31
  • Accepted : 2023.05.26
  • Published : 2023.05.25

Abstract

There is a burgeoning demand for minimizing the mass of satellites because of its direct impact on reducing launch-to-orbit cost. This must be done without compromising the structure's efficiency. The present paper introduces a relatively low-cost and easily implementable approach for optimizing structural mass to a maximum natural frequency. The natural frequencies of the satellite are of utmost pertinence to the application requirements, as the sensitive electronic instrumentation and onboard computers should not be affected by the vibrations of the satellite structure. This methodology is applied to a realistic model of Al-Azhar University micro-satellite in partnership with the Egyptian Space Agency. The procedure used in structural design can be summarized in two steps. The first step is to select the most favorable primary structural configuration among several different candidate variants. The nominated variant is selected as the one scoring maximum relative dynamic stiffness. The second step is to use perforation patterns reduce the overall mass of structural elements in the selected variant without changing the weight. The results of the presented procedure demonstrate that the mass reduction percentage was found to be 39% when compared to the unperforated configuration that had the same plate thickness. The findings of this study challenge the commonly accepted notion that isogrid perforations are the most effective means of achieving the goal of reducing mass while maintaining stiffness. Rather, the study highlights the potential benefits of exploring a wider range of perforation unit cells during the design process. The study revealed that rectangular perforation patterns had the lowest efficiency in terms of modal stiffness, while triangular patterns resulted in the highest efficiency. These results suggest that there may be significant gains to be made by considering a broader range of perforation shapes and configurations in the design of lightweight structures.

Keywords

Acknowledgement

The first author is grateful for the research support of the Egyptian space agency (EgSA).

References

  1. Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489. https://doi.org/10.12989/scs.2019.31.5.489.
  2. Aborehab, A., Kassem, M., Nemnem, A. and Kamel, M. (2019), "Miscellaneous modeling approaches and testing of a satellite honeycomb sandwich plate", J. Appl. Comput. Mech., 6, 1084-1097. https://doi.org/10.22055/JACM.2019.31255.1846.
  3. Aborehab, A., Kassem, M., Nemnem, A. and Kamel, M. (2021), "Mechanical characterization and static validation of a satellite honeycomb sandwich structure", Eng. Solid Mech., 9(1), 55-70. https://doi.org/10.5267/j.esm.2020.5.004.
  4. Akl, W., El-Sabbagh, A. and Baz, A. (2008), "Optimization of the static and dynamic characteristics of plates with isogrid stiffeners", Finite Elem. Anal. Des., 44(8), 513-523. https://doi.org/10.1016/j.finel.2008.01.015.
  5. Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Struct., 28, 1413-1426. https://doi.org/10.1016/j.istruc.2020.09.055.
  6. Anonymous (2014), Cubesat Design Specification Rev 14, California Polytechnic State University.
  7. Anwar, A., Albano, M., Hassan, G., Delfini, A., Volpini, F., Marchetti, M. and Elfiky, D. (2015, May), "Vacuum effect on spacecraft structure materials", International Conference on Aerospace Sciences and Aviation Technology, 16, The Military Technical College, May.
  8. Centea, T. and Nutt, S.R. (2016), "Manufacturing cost relationships for vacuum bag-only prepreg processing", J. Compos. Mater., 50(17), 2305-2321. https://doi.org/10.1177/0021998315602949.
  9. Cho, H.K. and Rhee, J. (2011), "Vibration in a satellite structure with a laminate composite hybrid sandwich panel", Compos. Struct., 93(10), 2566-2574. https://doi.org/10.1016/j.compstruct.2011.04.019.
  10. Cunningham, S.M., Tanner, D.A., Clifford, S., Butan, D. and Southern, M. (2020), "Effect of perforations on resonant modes of flat circular plates", Key Eng. Mater., 865, 31-35. https://doi.org/10.4028/www.scientific.net/KEM.865.31.
  11. Dawood, S.D.S. and Harmin, M.Y. (2022), "Structural responses of a conceptual microsatellite structure incorporating perforation patterns to dynamic launch loads", Aerosp., 9(8), 448. https://doi.org/10.3390/aerospace9080448.
  12. Dawood, S.D.S., Harithuddin, A.S.M. and Harmin, M.Y. (2022), "Modal analysis of conceptual microsatellite design employing perforated structural components for mass reduction", Aerosp., 9(1), 23. https://doi.org/10.3390/aerospace9010023.
  13. Dawood, S.D.S., Harmin, M.Y., Harithuddin, A.S.M., Ciang, C.C. and Rafie, A.S.M. (2021), "Computational study of mass reduction of a conceptual microsatellite structural subassembly utilizing metal perforations", J. Aeronaut. Astronaut. Aviat, 53, 57-66. https://doi.org/10.6125/JoAAA.202103_53(1).05.
  14. Desnoyers, N., Goyette, P., Leduc, B. and Boucher, M.A. (2017, September), "Dimensional stability performance of a CFRP sandwich optical bench for microsatellite payload", Material Technologies and Applications to Optics, Structures, Components, and Sub-Systems III, 10372, 96-105. https://doi.org/10.1117/12.2274311
  15. Drenthe, N.T., Zandbergen, B.T.C., Curran, R. and Van Pelt, M.O. (2019), "Cost estimating of commercial smallsat launch vehicles", Acta Astronautica, 155, 160-169. https://doi.org/10.1016/j.actaastro.2018.11.054.
  16. Fakoor, M., Zadeh, P.M. and Eskandari, H.M. (2017), "Developing an optimal layout design of a satellite system by considering natural frequency and attitude control constraints", Aerosp. Sci. Technol., 71, 172-188. https://doi.org/10.1016/j.ast.2017.09.012.
  17. Formisano, A., Lombardi, L. and Mazzolani, F.M. (2016), "Perforated metal shear panels as bracing devices of seismic-resistant structures", J. Constr. Steel Res., 126, 37-49. https://doi.org/10.1016/j.jcsr.2016.07.006.
  18. Garcia-Perez, A., Sanz-Andres, A ., Alonso, G. and Manguan, M.C. (2019), "Dynamic coupling on the design of space structures", Aerosp. Sci. Technol., 84, 1035-1048. https://doi.org/10.1016/j.ast.2018.11.045.
  19. Ghonasgi, K., Bakal, K. and Mali, K.D. (2016), "A Parametric study on free vibration of multi-perforated rectangular plates", Procedia Eng., 144, 60-67. https://doi.org/10.1016/j.proeng.2016.05.007.
  20. Guo, J., Zhang, J., Feng, Y., Wang, F. and Li, C. (2021), "Lightweight implementation of natural vibration frequency adjustment of satellite structures by varying the structural stiffness", Aerosp. Sci. Technol., 118, 107061. https://doi.org/10.1016/j.ast.2021.107061.
  21. Hamid, Z.A., Mostafa, M.A., Abou El Khair, M.T., Gomaa, M.H., Elfiky, D. and Ahmed, A. (2022), "Casting and forming of nano hard aluminum oxide film on the modified 6061 Al alloys for NARSSCube satellite structure", Egypt. J. Remote Sens. Space Sci., 25(4), 929-939. https://doi.org/10.1016/j.ejrs.2022.09.002.
  22. Heidt, H., Puig-Suari, J., Moore, A., Nakasuka, S. and Twiggs, R. (2000), "CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation", AIAA/USU Conference on Small Satellites, Utah State University, Logan, Utah.
  23. Iqbal, S., Jamil, T. and Mehdi, S.M. (2023), "Numerical simulation and validation of MWCNT-CFRP hybrid composite structure in lightweight satellite design", Compos. Struct., 303, 116323. https://doi.org/10.1016/j.compstruct.2022.116323.
  24. Jeong, K.H. and Jhung, M.J. (2017), "Free vibration analysis of partially perforated circular plates", Procedia Eng., 199, 182-187. https://doi.org/10.1016/j.proeng.2017.09.230.
  25. Jones, H. (2018), "The future impact of much lower launch cost", 48th International Conference on Environmental Systems, Albuquerque, NM, July.
  26. Kramer, H.J. and Cracknell, A.P. (2008), "An overview of small satellites in remote sensing", Int. J. Remote Sens., 29(15), 4285-4337. https://doi.org/10.1080/01431160801914952.
  27. Kuo, J.C., Hung, H.C., Mei-Yi, Y., Chia-Ray, C. and Lin, J. (2017), "Composite materials application on FORMOSAT-5 remote sensing instrument structure", Terres., Atmosph. Ocean. Sci., 28(2), 1.
  28. Kwon, S.C., Son, J.H., Song, S.C., Park, J.H., Koo, K.R. and Oh, H.U. (2021), "Innovative mechanical design strategy for actualizing 80 kg-Class X-Band active SAR small satellite of S-STEP", Aerosp., 8(6), 149. https://doi.org/10.3390/aerospace8060149.
  29. Lester, C. and Nutt, S. (2018), Composite Materials: Advantages and Cost Factors, Los Angeles, California, USA.
  30. Lim, J., You, C. and Dayyani, I. (2020), "Multi-objective topology optimization and structural analysis of periodic spaceframe structures", Mater. Des., 190, 108552. https://doi.org/10.1016/j.matdes.2020.108552.
  31. Liu, L., Wang, X., Sun, S., Cao, D. and Liu, X. (2019), "Dynamic characteristics of flexible spacecraft with double solar panels subjected to solar radiation", Int. J. Mech. Sci., 151, 22-32. https://doi.org/10.1016/j.ijmecsci.2018.10.067.
  32. Lv, M., Sun, D.W., Pu, H. and Zhu, H. (2022), "A core-shell-satellite structured Fe3O4@ MIL-100 (Fe)@Ag SERS substrate with adsorption, detection, degradation and recovery functionalities for selective detection of cationic dyes", Microchem. J., 183, 108137. https://doi.org/10.1016/j.microc.2022.108137.
  33. Meyer, R.R., Harwood, O.P., Harmon, M.B. and Orlando, J.I. (1973), Isogrid Design Handbook, No. MFS-22686.
  34. Ontac, S., Dag, S. and Gokler, M.I. (2007), "Structural finite element analysis of stiffened and honeycomb panels of the RASAT satellite", 2007 3rd International Conference on Recent Advances in Space Technologies, 171-175. https://doi.org/10.1109/RAST.2007.4283971.
  35. Pahl, G., Beitz, W., Feldhusen, J. and Grote, K.H. (2007), Engineering Design: A Systematic Approach, 3rd Edition, Springer.
  36. Sailesh, R., Yuvaraj, L., Pitchaimani, J., Doddamani, M. and Chinnapandi, L.B.M. (2021), "Acoustic behaviour of 3D printed bio-degradable micro-perforated panels with varying perforation cross-sections", Appl. Acoust., 174, 107769. https://doi.org/10.1016/j.apacoust.2020.107769.
  37. Salem, H., Boutchicha, D. and Boudjemai, A. (2018), "Modal analysis of the multi-shaped coupled honeycomb structures used in satellites structural design", Int. J. Interact. Des. Manuf., 12(3), 955-967. https://doi.org/10.1007/s12008-017-0444-6.
  38. Sarafin, T.P. and Larson, W.J. (1995). Spacecraft Structures and Mechanisms: from Concept to Launch, Microcosm Press and Kluwer Academic Publishers, Torrance.
  39. Shama Rao, N., Simha, T.G.A., Rao, K.P. and Ravi Kumar, G.V.V. (2018), "Carbon composites are becoming competitive and cost effective", White Paper.
  40. Spaceflight Inc. (2019), Spaceflight Mission Planning Guide, Spaceflight, Inc., Seattle, WA, USA.
  41. Stevens, C.L. (2002), "Design, analysis, fabrication, and testing of a nanosatellite structure", Doctoral Dissertation, Virginia Tech., Virginia.
  42. Sun, D.G., Guo, J.J., Song, Y., Yan, B.J., Li, Z.L. and Zhang, H.N. (2019), "Flutter stability analysis of a perforated damping blade for large wind turbines", J. Sandw. Struct. Mater., 21(3), 973-989. https://doi.org/10.1177/1099636217705290.
  43. Sweeting, M.N. (2018), "Modern small satellites-changing the economics of space", Proc. IEEE, 106(3), 343-361. https://doi.org/10.1109/JPROC.2018.2806218.
  44. Viviani, A., Iuspa, L. and Aprovitola, A. (2017), "Multi-objective optimization for re-entry spacecraft conceptual design using a free-form shape generator", Aerosp. Sci. Technol., 71, 312-324. https://doi.org/10.1016/j.ast.2017.09.030.
  45. Wagih, A.M., Hegaze, M.M. and Kamel, M.A. (2017), "FE modeling of Satellite's honeycomb sandwich panels using shell approach and solid approach", AIAA SPACE and Astronautics Forum and Exposition, 5184. https://doi.org/10.2514/6.2017-5184.
  46. Wei, J., Cao, D., Wang, L., Huang, H. and Huang, W. (2017), "Dynamic modeling and simulation for flexible spacecraft with flexible jointed solar panels", Int. J. Mech. Sci., 130, 558-570. https://doi.org/10.1016/j.ijmecsci.2017.06.037.
  47. Wu, C., Viquerat, A. and Aglietti, G. (2015), "Improving the natural frequency of bistable carbon fibre reinforced plastic tubes for space applications", J. Int. Assoc. Shell Spatial Struct., 56(4), 259-267.
  48. Xue, Y., Li, Y., Guang, J., Zhang, X. and Guo, J. (2008), "Small satellite remote sensing and applications-history, current and future", Int. J. Remote Sens., 29(15), 4339-4372. https://doi.org/10.1080/01431160801914945.
  49. Zhengchun, D., Mengrui, Z., Zhiguo, W. and Jianguo, Y. (2016), "Design and application of composite platform with extreme low thermal deformation for satellite", Compos. Struct., 152, 693-703. https://doi.org/10.1016/j.compstruct.2016.05.073.