• 제목/요약/키워드: Oral microbiota

검색결과 52건 처리시간 0.023초

Water Extract of Ecklonia cava Protects against Fine Dust (PM2.5)-Induced Health Damage by Regulating Gut Health

  • Park, Seon Kyeong;Kang, Jin Yong;Kim, Jong Min;Kim, Min Ji;Lee, Hyo Lim;Moon, Jong Hyun;Jeong, Hye Rin;Kim, Hyun-Jin;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.927-937
    • /
    • 2022
  • To confirm the therapeutic effect of the water extract from Ecklonia cava (WEE) against PM2.5 induced systemic health damage, we evaluated gut health with a focus on the microbiota and metabolites. Systemic damage in mice was induced through PM2.5 exposure for 12 weeks in a whole-body chamber. After exposure for 12 weeks, body weight and food intake decreased, and WEE at 200 mg/kg body weight (mpk) alleviated these metabolic efficiency changes. In addition, PM2.5 induced changes in the length of the colon and fecal water content. The administration of the WEE at 200 mpk oral dose effectively reduced changes in the colon caused by PM2.5 exposure. We also attempted to confirm whether the effect of the WEE is mediated via regulation of the microbiota-gut-brain axis in mice with PM2.5 induced systemic damage. We examined changes in the fecal microbiota and gut metabolites such as short-chain fatty acids (SCFAs) and kynurenine metabolites. In the PM2.5 exposed group, a decrease in the abundance of Lactobacillus (Family: Lactobacillaceae) and an increase in the abundance of Alistipes (Family: Rikenellaceae) were observed, and the administration of the WEE showed a beneficial effect on the gut microbiota. In addition, the WEE effectively increased the levels of SCFAs (acetate, propionate, and butyrate). Furthermore, kynurenic acid (KYNA), which is a critical neuroprotective metabolite in the gut-brain axis, was increased by the administration of the WEE. Our findings suggest that the WEE could be used as a potential therapeutic against PM2.5 induced health damage by regulating gut function.

Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau

  • Fan, Qingshan;Wanapat, Metha;Hou, Fujiang
    • Animal Bioscience
    • /
    • 제34권9호
    • /
    • pp.1466-1478
    • /
    • 2021
  • Objective: Ruminants are completely dependent on their microbiota for rumen fermentation, feed digestion, and consequently, their metabolism for productivity. This study aimed to evaluate the rumen bacteria of lactating yaks with different milk protein yields, using high-throughput sequencing technology, in order to understand the influence of these bacteria on milk production. Methods: Yaks with similar high milk protein yield (high milk yield and high milk protein content, HH; n = 12) and low milk protein yield (low milk yield and low milk protein content, LL; n = 12) were randomly selected from 57 mid-lactation yaks. Ruminal contents were collected using an oral stomach tube from the 24 yaks selected. High-throughput sequencing of bacterial 16S rRNA gene was used. Results: Ruminal ammonia N, total volatile fatty acids, acetate, propionate, and isobutyrate concentrations were found to be higher in HH than LL yaks. Community richness (Chao 1 index) and diversity indices (Shannon index) of rumen microbiota were higher in LL than HH yaks. Relative abundances of the Bacteroidetes and Tenericutes phyla in the rumen fluid were significantly increased in HH than LL yaks, but significantly decreased for Firmicutes. Relative abundances of the Succiniclasticum, Butyrivibrio 2, Prevotella 1, and Prevotellaceae UCG-001 genera in the rumen fluid of HH yaks was significantly increased, but significantly decreased for Christensenellaceae R-7 group and Coprococcus 1. Principal coordinates analysis on unweighted UniFrac distances revealed that the bacterial community structure of rumen differed between yaks with high and low milk protein yields. Furthermore, rumen microbiota were functionally enriched in relation to transporters, ABC transporters, ribosome, and urine metabolism, and also significantly altered in HH and LL yaks. Conclusion: We observed significant differences in the composition, diversity, fermentation product concentrations, and function of ruminal microorganisms between yaks with high and low milk protein yields, suggesting the potential influence of rumen microbiota on milk protein yield in yaks. A deeper understanding of this process may allow future modulation of the rumen microbiome for improved agricultural yield through bacterial community design.

Trimming conditions for DADA2 analysis in QIIME2 platform

  • Lee, Seo-Young;Yu, Yeuni;Chung, Jin;Na, Hee Sam
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.146-153
    • /
    • 2021
  • Accurate identification of microbes facilitates the prediction, prevention, and treatment of human diseases. To increase the accuracy of microbiome data analysis, a long region of the 16S rRNA is commonly sequenced via paired-end sequencing. In paired-end sequencing, a sufficient length of overlapping region is required for effective joining of the reads, and high-quality sequencing reads are needed at the overlapping region. Trimming sequences at the reads distal to a point where sequencing quality drops below a specific threshold enhance the joining process. In this study, we examined the effect of trimming conditions on the number of reads that remained after quality control and chimera removal in the Illumina paired-end reads of the V3-V4 hypervariable region. We also examined the alpha diversity and taxa assigned by each trimming condition. Optimum quality trimming increased the number of good reads and assigned more number of operational taxonomy units. The pre-analysis trimming step has a great influence on further microbiome analysis, and optimized trimming conditions should be applied for Divisive Amplicon Denoising Algorithm 2 analysis in QIIME2 platform.

Endodontic biofilms: contemporary and future treatment options

  • Yoo, Yeon-Jee;Perinpanayagam, Hiran;Oh, Soram;Kim, A-Reum;Han, Seung-Hyun;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • 제44권1호
    • /
    • pp.7.1-7.10
    • /
    • 2019
  • Apical periodontitis is a biofilm-mediated infection. The biofilm protects bacteria from host defenses and increase their resistance to intracanal disinfecting protocols. Understanding the virulence of these endodontic microbiota within biofilm is essential for the development of novel therapeutic procedures for intracanal disinfection. Both the disruption of biofilms and the killing of their bacteria are necessary to effectively treat apical periodontitis. Accordingly, a review of endodontic biofilm types, antimicrobial resistance mechanisms, and current and future therapeutic procedures for endodontic biofilm is provided.

Full mouth disinfection이 치주질환자에서의 구취에 미치는 영향 (The effect of a full mouth disinfection on oral malodor in chronic periodontitis patients)

  • 배수민;이주연;최점일;김성조
    • Journal of Periodontal and Implant Science
    • /
    • 제36권4호
    • /
    • pp.829-837
    • /
    • 2006
  • Halitosis, defined as an unpleasant oral odor, is a commonly experienced condition with a variety of etiological factors and may cause a significant social or psychological handicap to those suffering from it, In most cases, halitosis originates within the oral cavity itself and patients with periodontal disease often suffer from oral malodor, The most common cause of this disease is related to microbiota which reside on the tongue and in the periodontal pocket, This study was undertaken to examine the effect of full mouth disinfection including tongue scraping on oral malodor in a group of patients with chronic periodontitis, The relationship between halitosis and oral health status was also investigated, The volatile sulfur compounds (VSC) scores were significantly correlated with Plaque Index, Bleeding Index, pocket depth, and tongue coating score, The organoleptic ratings were significantly associated with Plaque Index, Bleeding Index. and tongue coating score, The VSC scores and organoleptic ratings correlated strongly with each other. Full mouth disinfection resulted in a significant reduction in the VSC scores. organoleptic ratings, and self-perception of malodor up to 12 weeks, This study indicates that in patients with chronic periodontitis. a full mouth disinfection including tongue scraping has a significant effect in the treatment of oral malodor.

Microbiological cleaning and disinfection efficacy of a three-stage ultrasonic processing protocol for CAD-CAM implant abutments

  • Gehrke, Peter;Riebe, Oliver;Fischer, Carsten;Weinhold, Octavio;Dhom, Gunter;Sader, Robert;Weigl, Paul
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권5호
    • /
    • pp.273-284
    • /
    • 2022
  • PURPOSE. Computer-aided design and manufacturing (CAD-CAM) of implant abutments has been shown to result in surface contamination from site-specific milling and fabrication processes. If not removed, these contaminants can have a potentially adverse effect and may trigger inflammatory responses of the peri-implant tissues. The aim of the present study was to evaluate the bacterial disinfection and cleaning efficacy of ultrasonic reprocessing in approved disinfectants to reduce the microbial load of CAD-CAM abutments. MATERIALS AND METHODS. Four different types of custom implant abutments (total N = 32) with eight specimens in each test group (type I to IV) were CAD-CAM manufactured. In two separate contamination experiments, specimens were contaminated with heparinized sheep blood alone and with heparinized sheep blood and the test bacterium Enterococcus faecium. Abutments in the test group were processed according to a three-stage ultrasonic protocol and assessed qualitatively and quantitatively by determination of residual protein. Ultrasonicated specimens contaminated with sheep blood and E. faecium were additionally eluted and the dilutions were incubated on agar plates for seven days. The determined bacterial counts were expressed as colony-forming units (CFU). RESULTS. Ultrasonic reprocessing resulted in a substantial decrease in residual bacterial protein to less than 80 ㎍ and a reduction in microbiota of more than 7 log levels of CFU for all abutment types, exceeding the effect required for disinfection. CONCLUSION. A three-stage ultrasonic cleaning and disinfection protocol results in effective bacterial decontamination. The procedure is reproducible and complies with the standardized reprocessing and disinfection specifications for one- or two-piece CAD-CAM implant abutments.

장내 마이크로바이옴과 차세대 프로바이오틱스 연구 현황 (Recent advances on next-generation probiotics linked to the gut microbiome)

  • 최학종
    • 식품과학과 산업
    • /
    • 제52권3호
    • /
    • pp.261-271
    • /
    • 2019
  • NGS 기술이 발전함에 따라 우리 몸의 생리와 면역조절에 있어서 장내미생물의 중요성이 알려지면서부터 장내미생물군집의 구조를 직접 조절할 수 있는 프로바이오틱스의 중요성 역시 재조명 받고 있다. 인류는 프로바이오틱스를 오랫동안 발효식품 등을 통하여 섭취하였는데, 프로바이오틱스는 식품의 보존성 및 영양성을 높일 뿐 아니라 인체의 건강에 이로운 역할을 한다. 특히 프로바이오틱스의 섭취는 생체 내에서 Treg의 기능을 활성화하여 장내 환경을 개선시켜 유익한 장내미생물의 생육을 도우며, 염증반응, 알러지질환, 자가면역질환 등을 완화시키는 효과가 있다. 특히 프로바이오틱스는 장내 유익균인 Bifidobacterium, Faecalibacterium, Akkermansia 및 Bacteroides 속 미생물의 빈도를 증가시키고, 이들은 단쇄지방산 및 신체에 이로운 대사체 등을 생산한다. 지금까지 프로바이오틱스는 대부분 건강기능식품으로 사용되어 왔으나, 최근 들어 장내 유익균에 대한 기능성이 알려지면서 기존 프로바이오틱스를 포함한 장내 미생물을 이용한 NGPs 개발이 활발히 진행되고 있다. 하지만 NGPs 개발에는 여전히 한계가 존재한다. 아직까지 장내 미생물의 분리, 동정은 일반 세균 배양에 비해 매우 까다롭고, 특별한 배양 기술이 필요하므로 현재까지 NGPs로 활용될 수 있는 장내 미생물은 매우 제한적이다. 또한 기존 프로바이오틱스와는 다르게 NGPs는 의약품처럼 전임상, 독성시험, 약물역학, 3단계의 임상시험을 거쳐야 한다. 하지만 기존 프로바이오틱스의 질병 개선 효과를 뛰어넘어 고형암, 대사질환 및 면역질환의 차세대 치료제로서의 활용 가능성이 매우 높기 때문에 앞으로 더 폭넓은 연구가 진행되어야 할 것이다.

Compound K attenuates hyperglycemia by enhancing glucagon-like peptide-1 secretion through activating TGR5 via the remodeling of gut microbiota and bile acid metabolism

  • Tian, Fengyuan;Huang, Shuo;Xu, Wangda;Chen, Lan;Su, Jianming;Ni, Haixiang;Feng, Xiaohong;Chen, Jie;Wang, Xi;Huang, Qi
    • Journal of Ginseng Research
    • /
    • 제46권6호
    • /
    • pp.780-789
    • /
    • 2022
  • Background: Incretin impairment, characterized by insufficient secretion of L-cell-derived glucagon-like peptide-1 (GLP-1), is a defining step of type 2 diabetes mellitus (T2DM). Ginsenoside compound K (CK) can stimulate GLP-1 secretion; however, the potential mechanism underlying this effect has not been established. Methods: CK (40 mg/kg) was administered orally to male db/db mice for 4 weeks. The body weight, oral glucose tolerance, GLP-1 secretion, gut microbiota sequencing, bile acid (BA) profiles, and BA synthesis markers of each subject were then analyzed. Moreover, TGR5 expression was evaluated by immunoblotting and immunofluorescence, and L-cell lineage markers involved in L-cell abundance were analyzed. Results: CK ameliorated obesity and impaired glucose tolerance in db/db mice by altering the gut microbiota, especially Ruminococcaceae family, and this changed microbe was positively correlated with secondary BA synthesis. Additionally, CK treatment resulted in the up-regulation of CYP7B1 and CYP27A1 and the down-regulation of CYP8B1, thereby shifting BA biosynthesis from the classical pathway to the alternative pathway. CK altered the BA pool by mainly increasing LCA and DCA. Furthermore, CK induced L-cell number expansion leading to enhanced GLP-1 release through TGR5 activation. These increases were supported by the upregulation of genes governing GLP-1 secretion and L-cell differentiation. Conclusions: The results indicate that CK improves glucose homeostasis by increasing L-cell numbers, which enhances GLP-1 release through a mechanism partially mediated by the gut microbiota-BA-TGR5 pathway. Therefore, that therapeutic attempts with CK might be useful for patients with T2DM.

고지방식이로 유도된 대사증후군 모델 동물에서 백호가인삼탕(白虎加人參湯)의 장내미생물 및 유전자 발현 조절을 통한 대사 개선 효과 (The Effect of Baekhogainsam-tang on Metabolism through Modulation of the Gut Microbiota and Gene Expression in High-Fat Diet Induced Metabolic Syndrome Animal Model)

  • 조민진;한송이;임수경;송은지;남영도;김호준
    • 한방재활의학과학회지
    • /
    • 제33권3호
    • /
    • pp.1-15
    • /
    • 2023
  • Objectives We aimed to find out the improvement effect of Baekhogainsam-tang (Baihu Jia Renshen-tang, BIT) on metabolic syndrome and alteration of microbiota and gene expression. Methods We used male C57BI/6 mice and randomly assigned them into three groups. Normal control group was fed 10% kcal% fat diet, high-fat diet (HFD) group was fed 45% kcal% fat diet and 10% fructose water. BIT group was fed same diet as HFD group and treated by BIT for once daily, 6 days per week, total 8 weeks. We measured their body weight and food intake every week and performed oral glucose tolerance test 1 week before the end of the study. Then we collected the blood sample to measure triglyceride, total cholesterol, high-density lipoprotein cholesterol, insulin, and hemoglobin A1c. We harvested tissue of liver, muscle, fat, and large intestine for quantitative polymerase chain reaction (qPCR) and histopathological examination. Fresh fecal samples were collected from each animal to verify alterations of gut microbiota and we used RNA from liver tissue for microarray analysis. Results The body weight and fat weight of BIT group were reduced compared to HFD group. The qPCR markers usually up-regulated in metabolic syndrome were decreased in BIT group. Bacteroides were higher in BIT group than other groups. There were also differences in gene expressions between two groups such as Cyp3a11 and Scd1. Conclusions We could find out BIT can ameliorate metabolic syndrome and suggest its effect is related to gut microbiota composition and gene expression pattern.

Comparison of the oral microbial composition between healthy individuals and periodontitis patients in different oral sampling sites using 16S metagenome profiling

  • Kim, Yeon-Tae;Jeong, Jinuk;Mun, Seyoung;Yun, Kyeongeui;Han, Kyudong;Jeong, Seong-Nyum
    • Journal of Periodontal and Implant Science
    • /
    • 제52권5호
    • /
    • pp.394-410
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the microbial composition of 3 types of oral samples through 16S metagenomic sequencing to determine how to resolve some sampling issues that occur during the collection of sub-gingival plaque samples. Methods: In total, 20 subjects were recruited. In both the healthy and periodontitis groups, samples of saliva and supra-gingival plaque were collected. Additionally, in the periodontitis group, sub-gingival plaque samples were collected from the deepest periodontal pocket. After DNA extraction from each sample, polymerase chain reaction amplification was performed on the V3-V4 hypervariable region on the 16S rRNA gene, followed by metagenomic sequencing and a bioinformatics analysis. Results: When comparing the healthy and periodontitis groups in terms of alpha-diversity, the saliva samples demonstrated much more substantial differences in bacterial diversity than the supra-gingival plaque samples. Moreover, in a comparison between the samples in the case group, the diversity score of the saliva samples was higher than that of the supra-gingival plaque samples, and it was similar to that of the sub-gingival plaque samples. In the beta-diversity analysis, the sub-gingival plaque samples exhibited a clustering pattern similar to that of the periodontitis group. Bacterial relative abundance analysis at the species level indicated lower relative frequencies of bacteria in the healthy group than in the periodontitis group. A statistically significant difference in frequency was observed in the saliva samples for specific pathogenic species (Porphyromonas gingivalis, Treponema denticola, and Prevotella intermedia). The saliva samples exhibited a similar relative richness of bacterial communities to that of sub-gingival plaque samples. Conclusions: In this 16S oral microbiome study, we confirmed that saliva samples had a microbial composition that was more similar to that of sub-gingival plaque samples than to that of supra-gingival plaque samples within the periodontitis group.