• Title/Summary/Keyword: Oral microbiology

Search Result 671, Processing Time 0.027 seconds

Inhibition of Type II Diabetes in ob/ob Mice and Enhancement of Mitochodrial Biogenesis in C2C12 Myotubes by Korean Mistletoe Extract (한국산 겨우살이 추출물(KME)의 2형 당뇨 억제 및 근육세포 미토콘드리아 생성 증가 효과)

  • Jung, Hoe-Yune;Yoo, Yung Choon;Kim, Inbo;Sung, Nak Yun;Choi, Ok-Byung;Choi, Bo-Hwa;Kim, Jong-Bae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.3
    • /
    • pp.324-330
    • /
    • 2015
  • In this study, the anti-diabetic activity of a cold water extract of Korean mistletoe (KME) was investigated in C57BL/6J Lep ob (ob/ob) mice. Oral administration of KME (50 or 100 mg/kg/d) significantly inhibited the level of blood glucose of ob/ob mice after 5 days from the beginning of KME treatment. And the anti-diabetic effect of KME was stabilized 10 days after oral administration, showing a substantial reduction of blood glucose levels by more than 20% as compared with control mice. The results of oral glucose tolerance test (OGTT) revealed that oral administration of KME gave rise to a remarkable improvement in overall glucose response. Oral administration of KME in ob/ob diabetic mice also significantly reduced blood total cholesterol (TCHO) and triglyceride (TG) levels compared with the diabetic control mice. Moreover, in an in vitro experiment using C2C12 myotubes, treatment of KME prominently increased glucose uptake. Interestingly, KME significantly increased the expression of peroxisome proliferator-activated receptor gamma coactivator 1-${\alpha}$ ($PGC-1{\alpha}$), a head regulator of mitochondrial biogenesis and oxidative metabolism, and $PGC-1{\alpha}$-associated genes such as glucose transporter type 4 (GLUT4), estrogen-related receptor-${\alpha}$ ($ERR-{\alpha}$), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TmfA) in C2C12 cells. These results suggest that KME has potential as a novel therapeutic agent for diabetes, and its anti-diabetic activity may be related to the regulation of mitochondrial biogenesis.

INTERACTION OF ORAL ENTEROCOCCUS DURANS WITH STREPTOCOCCUS MUTANS AND STREPTOCOCCUS ORALIS (구강에서 분리한 E. durans의 S. mutans와 S. oralis에 대한 작용)

  • Kim, Yong-Nam;Yang, Kyu-Ho;Oh, Jong-Suk;Chung, Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.2
    • /
    • pp.361-369
    • /
    • 2000
  • Enterococcus is a normal inhabitant of the human oral cavity, the vagina, and the gastrointestinal tract. Four isolates of Enterococcus in this study were identified as E. durans. These bacteria were characterized and the interaction of these bacteria with the important oral bacteria as like S. mutans and S. oralis was studied as follows. 1. The carbohydrate fermentation test and biochemical test showed similar results in 4 isolates. 2. The susceptibility test against erythromycin, penicillin, tobramycin, ampicillin, teicoplanin, ciprofloxacin, vancomycin, gentamicin, kanamycin, and streptomycin showed to be susceptible in all four isolates. 3. The optical density of absorbance at 550 nm was 1.405 in the culture of S. mutans in disposable cuvette, whereas being 0.855, 0.867, 0.797, and 1.083 in the combined culture of S. mutans and each E. durans. 4. The mean weight of produced artificial plaque on the wires in the beaker was $1566{\pm}103mg$ in culture of S. mutans only, whereas being reduced to $44{\pm}5mg,\;41{\pm}12mg,\;34{\pm}7mg,\;and\;38{\pm}12mg$ in the combined culture of S. mutans and each E. durans. The viable cells were $2.0\times10^9$ per ml in the culture of S. mutans wheras being $2.0\times10^7\;to\;6.0\times10^7$ per ml in the combined culture S. mutans and E. durans. 5. The viable cells were $2.1\times10^8$ per ml in the culture of S. oralis, wheras being $1.4\times10^7\;to\;7.0\times10^7$ per ml in the combined culture of S. oralis and E. durans. 6. Plasmid of about 60 kb was isolated in three isolates of E. durans. These results suggested that E. durans isolated from the oral cavity inhibited the replication of S. mutans and formation of artificial plaque, while inhibiting the replication of S. oralis a little.

  • PDF

Protective effect of euonymus alatus extract on experimental liver injury in mice (Euonymus alatus 추출물의 실험적 간 손상 억제)

  • Shin, Sook-Jeong;Lee, Byung-Yong;Shin, Dong-Keun;Lee, Jeong-Ho
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.213-220
    • /
    • 2001
  • Background: A previous study has shown that Euonymus alatus (EA) has an antidotic activities against inflammation, suggesting possibility that EA can exert this beneficial effects to liver injury by an initial protection against drug-induced hepatocyte demage. The present study was undertaken to evaluate the protective effect of EA-extract on experimentally induced hepatitis in ICR mice and to investigate some mechanisms responsible for its action. Methods: Water EA extract was used in this experiments. The mice received i.p. a dose of 700 mg/kg galactosamine (GalN) together with $5{\mu}g/kg$ of endotoxin (LPS), or received i.v. 12 mg/kg of concanavalin A (Con A). EA (4 mg/mouse) was administrated on day -2, -1 and 0 before induction of liver injury. Liver injury was assessed by measurement of serum alanin amino-transferase (SGPT) levels on 9 hr after GaIN.LPS, or 8 hr after con A administration. Results: Treatment with either GaIN or LPS alone did not cause hepatitis. However, simultaneous administration of GalN and LPS to mice resulted in LPS-dose dependent fulminant hepatitis. GaLN/LPS-induced liver injury was reduced when mice were given EA for 3 days before induction. This preventive effect of Ea was more prominent when EA was given by intraperitoneal route rather then by oral route. Pretreatment of EA or dexamethasone inhibited significantly $TNF{\alpha}$ production in GalL/LPS-injured mice. However, EA-treatment did not influence $TNF{\alpha}$-induced hepatitis in GalN-sensitized mice, suggesting that $TNF{\alpha}$ is likely to act as one of final mediators of endotoxin action and the protective effect of EA might be manifested chiefly by inhibition of endotoxin-induced $TNF{\alpha}$ production, not by blocking the $TNF{\alpha}$-action. Injection of Con A into mice evoked remarkable liver injury in a dose dependent fashion. This liver damage was reduced by EA-pretreatment. Dexamethasone significantly reduced both GalL/LPS-induced and Con A-induced liver damages, showing synergism with EA. However, indomethacin reduced only GalN/ LPS-induced hepatitis, not for Con A-induced hepatitis. Conclusion: These results led to the conclusion that EA may be able to contribute at least in part to prevent the drug-induced hepatotoxicity, and that its anti-hepatitis effects might be manifested directly by modulation of endogenous mediators, such as leukotriese D4, $TNF{\alpha}$ and free radical, and indirectly by regulation of immune mediated responses. Also these results suggested that EA could be developed as a potential antidotic agent.

  • PDF

Iron Containing Superoxide Dismutase of Streptomyces subrutilus P5 Increases Bacterial Heavy Metal Resistance by Sequestration (Streptomyces subrutilus P5의 철 함유 Superoxide Dismutase의 중금속 격리에 의한 세균의 중금속 저항성 증가)

  • Kim, Jae-Heon;Han, Kwang Yong;Jung, Ho Jin;Lee, Jungnam
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.179-184
    • /
    • 2014
  • Mitigation of heavy metal toxicity by iron containing superoxide dismutase (FeSOD) of Streptomyces subrutilus P5 was investigated. For E. coli $DH5{\alpha}$, the survival rate in the presence of 0.1 mM lead ions was only 7% after 120 min; however, with the addition of $0.1{\mu}M$ of purified native FeSOD the survival rate increased to 39%. This detoxification effect was also shown with 0.01 mM copper ions (survival increased from 6% to 50%), and the effect was stronger than with the use of EDTA. E. coli M15[pREP4] producing 6xHis-tagged FeSOD was constructed, and this showed an increase in survival rates throughout the incubation time; in the presence of 0.1 mM lead ions,the final increase at 60 min was from 3% to 19%. The FeSOD absorbed about 123 g-atom lead per subunit; therefore, we suggest that FeSOD could sequestrate toxic heavy metals to enhance bacterial survival against heavy metal contamination.

Quantitative analysis of periodontal pathogens present in the saliva of geriatric subjects

  • Shet, Uttom K.;Oh, Hee-Kyun;Kim, Hye-Jeong;Chung, Hyun-Ju;Kim, Young-Joon;Kim, Ok-Su;Choi, Hong-Ran;Kim, Ok-Jun;Lim, Hoi-Jeong;Lee, Seok-Woo
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.4
    • /
    • pp.183-190
    • /
    • 2013
  • Purpose: At present, information regarding periodontal disease in geriatric patients is scarce. The purpose of this study was to quantify the periodontal pathogens present in the saliva of Korean geriatric patients and assess the relationship between the bacterial levels and the periodontal condition. Methods: Six putative periodontal pathogens were quantified by using a real-time polymerase chain reaction assay in geriatric patient groups (>60 years) with mild chronic periodontitis (MCP), moderate chronic periodontitis (MoCP), and severe chronic periodontitis (SCP). The copy numbers of Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, and Prevotella intermedia were measured. Results: It was found that the bacterial copy numbers increased as the severity of the disease increased from MCP to SCP, except for P. intermedia. For P. intermedia, it was found that samples in the MCP group yielded the largest amount. It was also found that the quantities of P. gingivalis, T. forsythia, and T. denticola, the so-called "red complex" bacteria, were lower than those of F. nucleatum, A. actinomycetemcomitans, and P. intermedia in all of the samples. Conclusions: Collectively, the results of this study suggest that the levels of P. gingivalis, T. forsythia, F. nucleatum, and T. denticola present in saliva are associated with the severity of periodontal disease in geriatric patients.

A Comparative Study on the Quality of Sleep, Tongue Diagnosis, and Oral Microbiome in Accordance to the Korean Medicine Pattern Differentiation of Insomnia (불면 변증에 따른 수면의 질, 설진, 구강 미생물 차이에 대한 비교 연구)

  • Shim, Hyeyoon;Kwon, Ojin;Kim, Min-Jee;Song, Eun-Ji;Moon, Sun-Young;Nam, Young-Do;Nam, Dong-Hyun;Lee, Jun-Hwan;Koo, Byung Soo;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.40-51
    • /
    • 2020
  • Objectives: We aimed to compare the quality of sleep, tongue diagnosis, oral microbiology differences in insomnia of Liver qi stagnation (LQS) and Non-Liver qi stagnation (NLQS). Methods: 56 patients were classified as LQS or NLSQ type insomnia through the insomnia differentiation questionnaire. The depression scores between the groups were compared through beck depression inventory (BDI), and the sleep quality was compared through Pittsburgh sleep quality index (PSQI) and Insomnia Severity Index (ISI). We analyzed the sleep efficiency, total sleep time, total awake frequency, total and average awake time through actigraph. For the tongue diagnosis, the distribution of tongue coating in six areas were measured through Winkel tongue coating index (WTCI). Linear discriminant analysis was performed to observe the differences in composition of microbial strains between the groups. Results: The scores of BDI, ISI and PSQI were significantly higher in LQS group. The total sleep time in LQS group was significantly less than that of NLQS group. Among the areas of tongue, according to the WTCI, the amount of tongue coating in zones A and C was significantly small. In oral microbial analysis, there was no significant difference between the groups at the phylum level. At the genus level, Prevotella, Veillonella, and Streptococcus were predominant in LQS group, whereas Prevotella, Neisseria, and Streptococcus in NLQS group. Conclusions: It was meaningful that insomnia was more likely in LQS group than in NLQS group, and the composition of oral microorganisms was significantly different, which could lead to the diseases caused by stress.

Identification and analysis of microRNAs in Candida albicans (Candida albicans의 마이크로RNA 동정과 분석)

  • Cho, Jin-Hyun;Lee, Heon-Jin
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1494-1499
    • /
    • 2017
  • Oral infection due to Candida albicans is a widely recognized and frequent cause of superficial infections of the oral mucosa (oral candidiasis). Although oral candidiasis is not a life-threatening fungemia, it can cause severe problems in individuals under certain conditions. MicroRNAs (miRNAs) are noncoding, small RNA molecules, which regulate the expression of other genes by inhibiting the translation of target mRNAs. The present study was designed to identify miRNAs in C. albicans and determine their possible roles in this organism. miRNA-sized small RNAs (msRNAs) were cloned in C. albicans by deep sequencing, and their secondary structures were analyzed. All the cloned msRNAs satisfied conditions required to qualify them as miRNAs. Bioinformatics analysis revealed that two of the most highly expressed C. albicans msRNAs, Ca-363 and Ca-2019, were located in the 3' untranslated region of the corticosteroid-binding protein 1 (CBP1) gene in a reverse orientation. miRNA mimics were transformed into C. albicans to investigate their RNA-inhibitory functions. RNA oligonucleotide-transformed C. albicans was then observed by fluorescent microscopy. Quantitative PCR analysis showed that these msRNAs did not inhibit CBP1 gene expression 4 hr and 8 hr after ectopic miRNA transformation. These results suggest that msRNAs in C. albicans possess an miRNA-triggered RNA interference gene-silencing function, which is distinct from that exhibited by other eukaryotic systems.

Effect of Photothermal Therapy with Indocyanine Green in Multispecies Biofilm (Indocyanine Green을 이용한 광열 치료의 다종 우식원성 바이오필름에 대한 효과)

  • Kim, Myunghwan;Park, Howon;Lee, Juhyun;Seo, Hyunwoo;Lee, Siyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • The purpose of this study is to investigate the antibacterial effects of indocyanine green (ICG) and near-infrared diode lasers on multispecies biofilms. Multispecies biofilms of Streptococcus mutans, Lactobacillus casei and Candida albicans were treated with different irradiation time using photosensitizer ICG and 808 nm near-infrared diode laser. Colony forming unit (CFU) was measured, and qualitative evaluation of biofilm was performed with confocal laser scanning microscopy (CLSM). Temperature measurement was conducted to evaluate photothermal effect. In the groups using ICG and diode laser, reduction in CFU was statistically significant, but the difference in antibacterial effect on L. casei and C. albicans with irradiation time was not significant, and similar results were confirmed with CLSM. Groups with ICG and diode laser showed higher temperature elevation than groups without ICG, and results of measured temperature were similar to the range of hyperthermia. In conclusion, ICG and near-infrared diode laser showed antibacterial effects on multispecies biofilms, but studies on protocol are necessary for clinical application.

Susceptibility of Mutans streptococci in the Planktonic and Biofilm State to Erythrosine (부유 상태와 바이오필름 상태에서 Mutans streptococci의 Erythrosine에 대한 감수성 평가)

  • Gong, Jungeun;Seo, Hyunwoo;Lee, Siyoung;Park, Howon;Lee, Juhyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.2
    • /
    • pp.135-138
    • /
    • 2019
  • The aim of this study was to investigate the susceptibility of Mutans streptococci in both planktonic and biofilm states to erythrosine. S. mutans was cultured in brain-heart infusion (BHI) broth. Erythrosine was diluted in BHI broth and prepared at a concentration range of $0.02-10000{\mu}g/L$. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were measured using the microdilution method. After forming biofilms on 96-well plates, the minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) were measured. S. mutans was susceptible to erythrosine in both planktonic and biofilm states. MIC and MBC values were both $19.5{\mu}g/L$ for the planktonic state, while MBIC and MBEC values were $313{\mu}g/L$ and $2500{\mu}g/L$, respectively, for the biofilm state. Erythrosine ($19.5{\mu}g/L$) exhibited a bactericidal effect on S. mutans (killing 99.9%) in the planktonic state. For biofilms, erythrosine inhibited biofilm growth and eradicated 99.9% of biofilm bacteria at higher concentrations than MIC and MBC. These MBIC and MBEC concentrations are much lower than known noxious doses, and the MIC, MBC, and MBIC values were even lower than clinical concentrations.

Effect of Potassium Iodide on Erythrosine-Mediated Photodynamic Therapy on Streptococcus Mutans Biofilms (Streptococcus mutans 바이오필름에 대한 에리스로신 매개 광역동 치료 시 potassium iodide의 효과)

  • Yongsoon, Kim;Howon, Park;Juhyun, Lee;Haeni, Kim;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.3
    • /
    • pp.321-328
    • /
    • 2022
  • The aim of this in-vitro study is to evaluate the effect of potassium iodide (KI) on erythrosine-mediated photodynamic therapy (PDT) against Streptococcus mutans biofilms. S. mutans ATCC 25175 was cultured to form a biofilm on a hydroxyapatite disk. After diluting erythrosine to 20 μM and KI to 10, 50, and 100 mM, respectively, PDT was performed. The number of surviving bacteria was calculated as colony forming units (CFU)/mL and the statistical significance of the difference between groups was confirmed by Bonferroni post-hoc analysis. Cell viability was visually evaluated using confocal laser scanning microscopy (CLSM). As a result of the experiment, a significant decrease (p < 0.05) in CFU was observed in the experimental groups in which PDT was performed after applying KI regardless of the concentration of KI. In addition, a significant reduction (p < 0.05) in CFU was observed in the experimental group to which 100 mM KI was applied compared to 10 mM KI. The same results were confirmed when observing CLSM. KI significantly improved the efficacy of erythrosine-mediated PDT on S. mutans biofilms at all concentrations. This may compensate for the low sensitivity of PDT to biofilm-state bacteria strains, but it is necessary to establish an optimal clinical protocol through further research.