• 제목/요약/키워드: Oral Bacteria

Search Result 615, Processing Time 0.031 seconds

Effects of Sub Minimal Inhibitory Concentration of Metronidazole and Penicillin on Morphology of Aggregatibacter actinomycetemcomitans: Scanning Electron Microscopy Observation

  • Kwon, Ye Won;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • v.40 no.1
    • /
    • pp.35-39
    • /
    • 2015
  • Minimal inhibitory concentration (MIC) is the lowest concentration of antibiotics that inhibits the visible growth of bacteria. It has been reported that sub-MIC of antibiotics may result in morphological alterations, along with the biochemical and physiological changes in bacteria. The purpose of this study was to examine morphological changes of Aggregatibacter actinomycetemcomitans, after the treatment with sub-MIC metronidazole and penicillin. The bacterial morphology was observed with scanning electron microscope, after incubating with sub-MIC antibiotics. The length of A. actinomycetemcomitans was increased after the incubation with sub-MIC metronidazole and penicillin. Sub-MIC metronidazole and penicillin inhibited bacterial division and induced long filaments. Our study showed that metronidazole and penicillin can induce the morphological changes in A. actinomycetemcomitans.

Effects of Microbial Communication on The Growth of Periodontopathogens

  • Lee, Chung-Koo;Baek, Dong-Heon
    • International Journal of Oral Biology
    • /
    • v.35 no.4
    • /
    • pp.197-202
    • /
    • 2010
  • Most oral microorganisms exist as biofilms which initiate formation via the attachment of an early colonizer to host proteins on the tooth surface. Fusobacterium nucleatum act as a bridge between early and late colonizers. Dental biofilms eventually comprise dental pathogens such as Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia. To evaluate the effects of mutual interactions between oral bacteria on the growth of biofilms, periodontopathogens were co-cultured with a $0.4\;{\mu}m$ barrier. Streptococcus gordonii inhibited the growth of F. nucleatum and periodontopathogens. However, F. nucleatum, P. gingivalis and T. denticola activated the growth of other bacteria. A co-culture system of early and late colonizers could be a useful tool to further understand bacterial interactions during the development of dental biofilm.

Recombinant Azurin from Pseudomonas aeruginosa Induces Apoptotic Cell Death in Oral Squamous Carcinoma Cells

  • Kim, Uk-Kyu;Jeon, Hyun-Jun;Lee, Moo-Hyung;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • v.35 no.2
    • /
    • pp.35-42
    • /
    • 2010
  • The use of bacteria in the treatment of cancer has a long and interesting history. The use of live bacteria in this way however has a number of potential problems including toxicity. Purified low molecular weight bacterial proteins have therefore been tested as anticancer agents to avoid such complications. Oral cancer is a widely occurring disease around the world and these lesions are typically very resistant to anticancer agents. In our present study we investigated the effects of purified recombinant azurin from Pseudomonas (P.) aeruginosa against YD-9 (p53-positive) human oral squamous carcinoma cells. Azurin showed cytotoxic effects against these cells in a dose dependent manner. The cell death accompanied by this treatment was found to be characterized by chromatin condensation and apoptotic bodies. Azurin treatment was further found to increase the expression of p53 The stabilization of p53 and induction of apoptosis in YD-9 cells by azurin suggests that it has potentially very strong anticancer properties in oral squamous carcinoma.

A Case Report on the Risk of Enterobacteriaceae Infection in the Oral and Maxillofacial Region

  • Lim, Lee-Rang;Lee, Young-Cheol;Lee, Hye-Jung;Jung, Gyeo-Woon;Yun, Na-Ra;Seo, Yo-Seob;Oh, Ji-Su;You, Jae-Seek
    • Journal of Oral Medicine and Pain
    • /
    • v.44 no.3
    • /
    • pp.133-139
    • /
    • 2019
  • Osteomyelitis is an inflammatory condition of the bone caused by pathogenic bacteria. The causative pathogen is usually oral residing bacteria, but this is a report of patients with osteomyelitis infected with Enterobacteriaceae, which is not common. Enterobacteriaceae has been known to cause in-hospital infections for over last 30 years and is known to have multiple antibiotic resistances. Both cases in this study developed osteomyelitis after removal of the dentigerous cyst. Enterobacter aerogenes was cultured in one patient and Serratia marcescens in the other. After changing antibiotics through antibiotic susceptibility testing, clinical symptoms subsided and radiographic images confirmed that the callus formed and recovered at the same time.

Study on oral periodontal pathogens distribution and risk factors in college students (일부 대학생들의 구강 내 치주질환 세균 분포와 검출 위험요인 조사)

  • Yu, Kyung-Ja;Hwang, Joo-Hee
    • Journal of Korean society of Dental Hygiene
    • /
    • v.17 no.1
    • /
    • pp.77-87
    • /
    • 2017
  • Objectives: This study attempted to provide basic data necessary for a prevention promotion program for oral health management in college students. Methods: This study investigated general characteristics and subjective periodontal health status using a structured questionnaire and examined the distribution of bacteria related to periodontal disease in oral cavity by real-time PCR in subjects composed of 57 male and female college students. Results: It was statistically significant that P. gingivalis was detected more frequently in smokers with 25% compared to non-smokers with 6.1%, not detected in subjects that engaged in tooth brushing more than three times a day, and was detected in subjects that engaged in tooth brushing fewer than three times a day with 21.1%. Pathogens in saliva had significant correlations with each other (p<0.05, p<0.01, p<0.001). P. gingivalis showed positive correlations with T. forsythia, T. denticola, P. intermedia, and A. actinomycetemocmitans, and T. forsythia with P. intermedia, and A. actinomycetemocmitans. P. intermedia had a positive correlation with A. actinomycetemocmitans, and F. nucleatum with P. intermedia. Conclusions: Bacteria related to periodontal disease in oral cavities in college students were distributed in various ways, and smoking and the frequency of daily toothbrushing were found to be risk factors for the detection of bacteria.

Antibacterial Activity of Sophoraflavanone G Isolated from the Roots of Sophora flavescens

  • Cha, Jeong-Dan;Jeong, Mi-Ran;Jeong, Seung-Il;Lee, Kyung-Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.858-864
    • /
    • 2007
  • This study investigated the antibacterial activities of sophoraflavanone G from Sophora flavescens in combination with two antimicrobial agents against oral bacteria. The combined effect of sophoraflavanone G and the antimicrobial agents was evaluated using the checkerboard method to obtain a fractional inhibitory concentration(FIC) index. The sophoraflavanone G+ampicillin(AM) combination was found to have a synergistic effect against S. mutans, S. sanguinis, S. sobrinus, S. gordonii, A. actinomycetemcomitans, F nucleatum, P. intermedia, and P. gingivalis, whereas the sophoraflavanone G+gentamicin(GM) combination had a synergistic effect against S. sanguinis, S. criceti, S. anginosus, A. actinomycetemcomitans, F nucleatum, P. intermedia, and P. gingivalis. Neither combination exhibited any antagonistic interactions(FIC index>4). In particular, the MICs/MBCs for all the bacteria were reduced to one-half$\sim$one-sixteenth as a result of the drug combinations. A synergistic interaction was also confirmed by time-kill studies for nine bacteria where the checkerboard suggested synergy. Thus, a strong bactericidal effect was exerted through the drug combinations, plus in vitro data suggested that sophoraflavanone G combined with other antibiotics may be microbiologically beneficial rather than antagonistic.

The Effect of Toll-like Receptor 2 Activation on the Non-opsonic Phagocytosis of Oral Bacteria and Concomitant Production of Reactive Oxygen Species by Human Neutrophils

  • Kim, Kap Youl;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • v.41 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • Chronic/cyclic neutropenia, leukocyte adhesion deficiency syndrome, Papillon-$Lef{\grave{e}}vre$ syndrome, and $Ch{\grave{e}}diak$-Higashi syndrome are associated with severe periodontitis, suggesting the importance of neutrophils in the maintenance of periodontal health. Various Toll-like receptor (TLR) ligands are known to stimulate neutrophil function, including FcR-mediated phagocytosis. In the present study, the effect of TLR2 activation on the non-opsonic phagocytosis of oral bacteria and concomitant production of reactive oxygen species (ROS) by human neutrophils was evaluated. Neutrophils isolated from peripheral blood were incubated with Streptococcus sanguinis or Porphyromonas gingivalis in the presence of various concentrations of $Pam_3CSK_4$, a synthetic TLR2 ligand, and analyzed for phagocytosis and ROS production by flow cytometry and chemiluminescence, respectively. $Pam_3CSK_4$ significantly increased the phagocytosis of both bacterial species in a dose-dependent manner. However, the enhancing effect was greater for S. sanguinis than for P. gingivalis. $Pam_3CSK_4$ alone induced ROS production in neutrophils and also increased concomitant ROS production induced by bacteria. Interestingly, incubation with P. gingivalis and $Pam_3CSK_4$ decreased the amounts of ROS, as compared to $Pam_3CSK_4$ alone, indicating the possibility that P. gingivalis survives within neutrophils. However, neutrophils efficiently killed phagocytosed bacteria of both species despite the absence of $Pam_3CSK_4$. Although P. gingivalis is poorly phagocytosed even by the TLR2-activated neutrophils, TLR2 activation of neutrophils may help to reduce the colonization of P. gingivalis by efficiently eliminating S. sanguinis, an early colonizer, in subgingival biofilm.

Effect of Sonicated Extract of Treponema Denticola on Osteoclast Differentiation (Treponema denticola 분쇄액에 의한 파골세포 형성 효과)

  • Choi, Bong-Kyu;Lee, Hyun-Jung;Jeong, Gook-Jin;Jung, Soon-Hee;Kwak, Wall-Ah;Yoo, Yun-Jung
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.4
    • /
    • pp.995-1005
    • /
    • 1999
  • Alveolar bone destruction is a character-istic of periodontal disease. Treponema denticola are found in significantly increased numbers in the sites affected with periodontal disease. In order to clarify the role of T. denticola in destruction of alveo-lar bone in periodontal disease, this study was undertaken to determine the effect of sonicated extract of T. denticola on osteo-clast differentiation in co-culture system of mouse bone marrow cells and calvaria cells. The ability of osteoclast formation was estimated by counting the number of tar-tartrate resistant acid phosphatase(TRAP) positive cells. Sonicated extract of this bacteria stimulated osteoclast formation in a dose dependent manner(p<0.05). Indomathacin, an inhibitor of prostaglandin synthesis, decreased osteoclast formation induced by sonicated extract of this bacte-bacteria(p<0.05). Extract-induced osteoclast formation was decreased, when sonicated extract of bacteria was heated(p<0.05). These findings suggest that T. denticola induces osteoclast differentiation, and protein component of this bacteria and $PGE_2$ may play an important role in this process.

  • PDF

Antimicrobial Activity of Korean Propolis Extracts on Oral Pathogenic Microorganisms

  • Roh, Jiyeon;Kim, Ki-Rim
    • Journal of dental hygiene science
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • Propolis has been used as a natural remedy in folk medicine worldwide. The antibacterial, antiviral, antifungal, and antiprotozoal aspects of its antimicrobial properties have been widely investigated. However, few studies focused on its applications in dentistry. Many dental diseases are related to various microorganisms in the oral cavity. In this study, we assessed the antimicrobial activity of Korean propolis extract, collected from 6 different regions, on oral pathogenic microorganisms. The propolis samples, collected from 6 different regions (P1: Uijeongbu, P2: Ansan, P3: Hongcheon, P4: Iksan, P5: Gwangju, and P6: Sangju), were dissolved in ethanol at two different concentrations (10 and 50 mg/ml). Three oral bacteria (Streptococcus mutans, Staphylococcus aureus, and Enterococcus faecalis) and one fungus (Candida albicans) were activated in general broth for 24 hours. Microorganisms were diluted and spread onto agar plates, onto which sterilized 6 mm filter papers with or without each propolis sample were placed. After 24 hours of incubation, clear zones of inhibition were observed. All tests were performed in triplicate. The propolis samples showed significant antibacterial and antifungal activity on oral pathogenic microorganisms; in addition, low-concentration groups showed outstanding antimicrobial efficacy on the 4 different microorganisms. Among the samples, P6 had significantly higher antibacterial activity than that of the others against three different bacteria. In particular, a high concentration of P6 showed a significant antifungal effect. In conclusion, we confirmed that Korean propolis has an inhibitory effect on oral pathogenic bacteria and fungi. Therefore, we suggest the possibility of developing oral medicine and oral care products based on Korean propolis.

Alteration of Anaerobic Bacteria and S. mutans Count in Oral Cavity after Occlusal Stabilization Appliance Use (교합안정장치 사용에 따른 구강 내 혐기성 세균과 S. mutans의 변화)

  • Byun, Jin-Seok;Suh, Bong-Jik
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.4
    • /
    • pp.375-381
    • /
    • 2007
  • Occlusal stabilization appliance is one of the most common treatment option for management of temporomandibular disorders. It acts in oral cavity for several hours per day, and usually it will take at least 6 months to 2 years of total wearing periods to take a treatment goal. In the oral cavity, occlusal stabilization appliance, unintentional manner, is able to acts as a reservoir of bacteria and protect bacteria from saliva and oxygen. This condition is so favorable to many bacteria such as S. mutans and other anaerobes, usually have been reported as causative factors of dental caries, periodontal disease and oral malodor. In this study, we investigated anaerobic bacteria and S. mutans count before and after occlusal stabilization appliance use to evaluate the possible role of occlusal stabilization appliance as protector of these bacteria. Four men(average 27.5 years) wore maxillary occlusal stabilization appliance at each night(average 9 hours) for 5 days. we swabbed saliva-plaque mixed sample at 3 different site(maxillary left 2nd molar, maxillary left central incisor, mandibular left 2nd molar) before and after occlusal stabilization appliance use. Each samples were plated in (1) anaerobic blood agar medium, (2) selective S. mutans medium(MS-MUTV) and incubated in anaerobic chamber($CO^2$ 10%, $37^{\circ}C$) for 72 hours. Each bacterial colony forming unit(CFU) were counted with naked eyes. From obtained data, we can conclude as follows: 1. There was some changes about anaerobic bacteria and S. mutans count in oral cavity after occlusal stabilization appliance use. 2. The number of anaerobic bacteria was significantly increased at maxillary 2nd molar(P=0.003), maxillary central incisor(P=0.020) after occlusal stabilization appliance use compared with before. 3. Occlusal stabilization appliance use itself had indirect effect to increase the number of anaerobic bacteria at other uncovered opponent tooth site. 4. The number of S. mutans was significantly increased at maxillary 2nd molar(P=0.043), maxillary central incisor (P=0.049) after occlusal stabilization appliance use compared with before. 5. Occlusal stabilization appliance use itself had not any effect on the number of S. mutans at other uncovered opponent tooth site.