• Title/Summary/Keyword: Optimum shape

Search Result 1,373, Processing Time 0.025 seconds

A Study on Acoustic Radiation Reduction of a Vibrating Panel by Using Particle Swarm Optimization Algorithm (군집행동 알고리즘을 이용한 판넬구조물의 방사소음저감에 관한 연구)

  • Jeon, Jin-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.5
    • /
    • pp.482-490
    • /
    • 2009
  • In this paper, the author proposes a new method for acoustic radiation optimum design to minimize noise from a vibrating panel-like structure using a collaborative population-based search method called the particle swarm optimization algorithm(PSOA). The PSOA is a parallel evolutionary computation technique initially developed by Kennedy and Eberhart. The acoustic radiation optimization method based on the PSOA consists of two processes. In the first process, the acoustic radiation analysis by an integrated p-version FEM/BEM, which was developed by using MATLAB, is performed to evaluate the exterior acoustic radiation field of the panel. The second process is to search the optimum design variables: 1) Shape of Bezier curves and 2) Shape and position of ribs, to minimize noise from the panel using the PSOA. The optimization method based on the PSOA is compared to that based on the steady state genetic algorithm(SSGA) in order to verify the effectiveness and validity of the optimal solution by PSOA. Finally, it is shown that the optimal designs of the panel obtained by using the PSOA can achieve effective reductions in radiated sound power.

Shell Design Optimization Technique considering the Appearance of Close Frequencies in Optimization Process (고유진동수 접근현상을 고려한 쉘 구조물의 설계최적화기법)

  • Bae, Jung-Eun;Lee, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.248-251
    • /
    • 2006
  • This paper provides the basic theory and numerical results of shell design optimization considering the appearance of close natural frequencies in optimization process. In this study the fundamental natural frequency to be maximized is considered as the objective function and the initial volume of structures is used as the constraint function. In addition, the constraints related to natural frequency is also adopted to avoid the natural frequency closeness phenomenon during the optimization iteration. The Coon's patch is used to represent the shape and thickness distribution of shells. A degenerated shell finite element is adopted to calculate the fundamental natural frequency of the shells. The SQP available in the optimizer DoT is used to search optimum solution. From numerical results, the introduction of the frequency constraint into shell design optimization can deeply affect on the final optimum shape of shells although it is likely to be used to avoid the frequency closeness phenomenon.

  • PDF

Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System (성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향)

  • Kim, Duck-Jin;Lee, Jee-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

A Development of a Shape Optimization Design Techniques for the Diagrid Tapered Tall-Building (테이퍼드 다이아그리드 초고층 구조물의 형상 최적설계기법 개발)

  • Han, Sang-Eul;Lee, Han-Joo;Ryu, Jong-Hye;Jeong, So-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • In this paper, the optimal diagrid angle of atypical tall buildings has been found using diagrid optimization technique which is based on parametric algorithm. A diagrid is a diagonal grid which can be seen among atypical tall buildings and structures which effectively resist horizontal and vertical direction loads. Therefore, it is also the objective of this studyto find the maximum stiffness of atypical tall buildings by optimizing diagrid angle. Moreover, this study touches on both cylindrical and tapered off cylindrical structures, as shown in the examples to check the compatibility of optimum diagrid angle, which effectively resists horizontal deformation on top by optimization algorithm.

Ceramic Core Processing Technology for the Glass Mold of Aspherical Lenses using High-speed Cutting Machine (고속 가공기를 활용한 비구면 안경렌즈 유리금형용 세라믹코어 가공기술)

  • Ryu, Geun-Man;Kim, Hyo-Sik;Kim, Hong-Tek;Yang, Sun-Choel;Jang, Ki-Soo;Kim, Dong-Ik;Won, Jong-Ho;Kim, Geon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.7-12
    • /
    • 2012
  • Ceramic core processing technology using 5-axis high-speed cutting machine is applied to make the glass molds for aspherical ophthalmic lenses. In the technology, optimum processing conditions for aspherical ceramic molds are based on minimal experimental data of surface roughness. Such surface roughness is influenced by fabricating tools, cutting speed, feed rate, and depth of cut, respectively. In this paper, we present that surface roughness and shape accuracy of aspheric ceramic mold obtained by optimum processing conditions are Pa $0.6184{\mu}m$ and Pt $5.0301{\mu}m$, respectively, and propose that these values are sufficiently possible to apply to making the glass molds for aspherical ophthalmic lenses.

Optimum Design of Head Slider with Ultra-Thin Air-Lubricated Spacing for Enhanced Flying Characteristics (부상특성 향상을 위한 극소 공기윤활막을 지닌 헤드 슬라이더의 형상 최적 설계)

  • Gang, Tae-Sik;Choe, Dong-Hun;Jeong, Tae-Geon;Park, No-Yeol;Lee, Seong-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.725-733
    • /
    • 2001
  • Flying attitudes of the slider, which are flying height, pitch and roll, are affected by the air flow velocity, the skew angle, and the manufacturing tolerances. Traditional designs of the air bearing surface have considered only the flying performances for the variations in the air flow velocity and the skew angle, which are determined by the radial position. In this study, we present the new shape design of the air bearing surface by considering the track seek performance and the air bearing stiffness as well as the traditional design requirements. The optimization technique is used to improve the dynamic characteristics and operating performance of the newly proposed air bearing surface shape design further. The optimized configuration is obtained automatically and the optimally designed sliders show the enhanced flying and dynamic characteristics.

Optimal Design of Ventilated Disc Brake Rotor (벤틸레이티드 디스크 브레이크 로터의 최적설계)

  • Lee, Su-Gi;Seong, Bu-Yong;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.593-602
    • /
    • 2000
  • The shape optimization is performed to minimize the judder of ventilated disc brake rotor that is induced by the thermal deformation of the disc. A three-dimensional finite element is developed to analyze the coupled system of temperature and displacement field, and the thermal conductivity and mechanical stiffness matrices are simultaneously taken into account. To reduce computing time, an equivalent heat transfer rate is introduced approximating the heat transfer rate on the disc surface. A deformation factor is introduced to describe the thermal deformation causing the judder. The deformation factor is chosen as an objective function in the optimization process. Consequently an optimum design is then performed minimizing the deformation factor with the design variables of the shape of the disc. The optimum design procedure presented in this study is proven to be an effective method of minimizing the judder, and it reduces the thermal deformation by 23% of the initial geometry.

A Study on Improving The Coefficient of Utilization of Material in Deep Drawing Process (딥드로잉공정에서의 재료 수율 향상에 관한 연구)

  • Ha, Jong-Ho;Kang, Hyung-Sun;Baik, Ho-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.509-516
    • /
    • 2009
  • This paper is the study on improving the coefficient of utilization of material in deep drawing process. Cylindrical cup drawing process is widely used in sheet metal forming process. The blank shape is one of the important things in sheet metal forming process. It is produced for the bridge of blank in a blanking process. The coefficient of utilization of material is much effected by this bridge of blank. This study offered a new process method to reduce the loss of material. The new blank shape offered and manufactured by new process method is investigated by a finite element method and the experiment. Then the wrinkling, the punch load, the thickness distribution is observed. This result is different from the result of circular blank process. And it is got that the Max strain, the wrinkle and the height of the wrinkle are effected by the holding force and the punch load. As a result, if the processing optimum condition is found, the loss of material will be reduced. It is necessary to research systematically about determining the optimum value of process variables.

A Study on Improving The Coefficient of Utilization of Material in Deep Drawing Process (딥드로잉 공정에서 재료 이용률을 높이기 위한 연구)

  • Lee, Kyung-Won;Ban, Jae-Sam;Park, Young-Jin;Cho, Kyu-Zong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.179-186
    • /
    • 2002
  • This paper is the study on improving the coefficient of utilization of material in deep drawing process. Cylindrical cup drawing process is widely used in sheet metal forming process. The blank shape is one of the important things in sheet metal forming process. It is produced for the bridge of blank in a blanking process. The coefficient of utilization of material is much effected by this bridge of blank. This study offered a new process method to reduce the loss of material. The new blank shape offered and manufactured by new process method is investigated by a finite element method and the experiment. Then the wrinkling, the punch load, the thickness distribution is observed. This result is different from the result of circular blank process. And it is got that the Max strain, the wrinkle and the height of the wrinkle are effected by the holding farce and the punch load. As a result. if the processing optimum condition is found, the loss of material will be reduced. It is necessary to research systematically about determining the optimum vague of process variables.

Optimum Design of Trimming Line by One-Step Analysis for Auto Body Parts (역해석을 이용한 차체 부재의 트리밍라인 최적설계)

  • Bao, Y.D.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.49-54
    • /
    • 2006
  • During most of manufacturing processes of auto-body panels, the trimming line should be designed in advance prior to flanging. It is an important task to find a feasible trimming line to obtain a precise final part shape after flanging. This paper proposes a new fast method to find feasible trimming line based on one-step analysis. The basic idea of the one-step analysis is to seek for the nodal positions in the initial blank from the final part, and then the distribution of strain, stress and thickness in the final configuration can be calculated by comparing the nodal position in the initial blank sheet with the one of the final part. The one-step analysis method is able to predict the trimming line before flanging since the desired product shape after flanging can be defined from the final configuration and most of strain paths are simple during the flanging process. Finally, designers can obtain a discrete trimming line from the boundary of the developed meshes after one-step analysis and import it into CAD system in the early design stage. The proposed method has been successfully applied to two basic curve flanging processes demonstrating many advantages.

  • PDF