• Title/Summary/Keyword: Optimum replacement

Search Result 274, Processing Time 0.032 seconds

Hydrogen Evolution through Mixed Continuous Culture of Rhodopseudomonas sphaeroides and Clostridium butyricum (Rhodopseudomonas sphaeroides와 Clostridium butyricum의 혼합배양을 통한 수소생성의 연속발효계)

  • Go, Young-Hyun;Bae, Moo
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.1
    • /
    • pp.46-53
    • /
    • 1999
  • The purpose of this study was to optimize the conditions of continuous mixed culture of C.butyricum and R. spaeroides K-7, which were able to produce hydrogen using biomass-dreived substrate. To investigate the possibility of continuous culture, semi-continuous culture was carried out for 20 days. In semi-continuous culture using the reactor system, the replacement rate of fresh medium was 30% of total medium volume for the highest hydrogen evolution. In continuous culture, the optimum dilution rate was determined to be 0.05$h^{-1}$. The continuous culture produced 3.1 times as compared with the hydrogen on batch culture. On the other hand, the continuous mixed culture produced 1.3~2.1 times as much as hydrogen of the continuous monoculture of C. butyricum. When 10g of glucose in the media (1l) was supplied as a carbon source on continuous culture, mixed culture of C. butyricum and R. sphaeroides K-7 increased hydrogen evolution rate. Because considerable amount of glutamate was contained in waste water of glutamate fermentation, utilization of glutamate was examined in mixed culture. As a result of examination, production of hydorgen was slightly inhibited by high concentration of glutamate, more than 20mM, on continuous monoculture of R. sphaeroides K-7. On the other hand, both on continuous monoculture of C. butyricum and on mixed culture of C. butyricum and R. sphaeroides K-7, production of hydrogen was not inhibited by high concentration of glutamate such as 100mM. Hence this suggests that high concentration of waste water can be used as good substrate for hydrogen production on monoculture of C. butyricum and mixed culture of C. butyricum and R. sphaeroides K-7.

  • PDF

An Experimental Study on the Mechanical Properties of Silica Fume and Fly Ash.Cement Composites (실리카흄 및 플라이애쉬.시멘트 복합체의 역학적 특성에 관한 실험적 연구)

  • 박승범;윤의식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.158-170
    • /
    • 1994
  • The results of an experimental study on the manufacture and the mechanical properties of carbon fiber rekforced silica fume . cement composites and light weight fly ash . cement composites are presented in this paper. 11s the test results show, the flexural strength, fracture toughness and ductility of CF reinforced silica fume . cement composites were remarkably increased by the increase of carbon fiber contents. And the workability of the fly ash . cement composites were improved, but the compressive and flexural strength and bulk specific gravity of them are decreased by increasing the ratio of fly ash to cement. And the compressive and flexural strength of the fly ash cement composites by cured under the hot water were improved than those by mositure cured. Also, the manufacturing process technology of lightweight fly ash . cement composites in replacement of general autoclaved lightweight concrete was developed and its optimum mix proportions were proposed.

Effects of Wheat Flour Protein Contents on Ramyon (deep-fried instant noodle) Quality (밀가루의 단백질 함량이 라면의 품질에 미치는 영향)

  • Chung, Gu-Sik;Kim, Sung-Kon
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.649-655
    • /
    • 1991
  • The quality of Ramyon prepared from hard red winter-western white (HRW-WW) and dark northern spring-western white (DNS-WW) flour blends having protein contents of 9.12-9.78% was examined. The noodles were manufactured by commercial process with the same water absorption. The weight and volume of cooked noodle were decreased as the protein content increased at the same cooking time. No significant differences in cooking properties were observed between noodles prepared from HRW-WW and DNS-WW blends. The weight and volume of noodle prepared from HRW-WW blend cooked for 4 min showed significant negative correlation with farinograph and extensograph data and protein contents of flours, but positive correlation with amylograph data. Such correlations were not found from noodles prepared from DNS-WW blend. Based on the sensory evaluation of cooked noodle it was concluded that the optimum protein content for noodle manufacture was in the range of 9.28-9.62%. The replacement of HRW with DNS flour had no effect on the sensory quality of noodle.

  • PDF

Development of Application Block Using Geobond and Ash from Sewage Sludge Incinerator II (하수슬러지 소각재와 무기바인더를 이용한 응용 블록 개발 II)

  • Lee, Hyun-joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.412-417
    • /
    • 2015
  • This study investigated to recycle geobond and ash produced in thesewage sludge incinerator using reduction/stabilization. Nonsintering process was performed by binding cement (High Early Strength Portland cement, Micro cement), geobond and sand mixed with sewage sludge ash (SSA). Chemical ingradients of the sewage sludge ash was mainly composed of $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO and others, which were similar to those of the each binders consisting High Early Strength Portland cement, Micro cement and geobond. Results showed that unconfined the long term compressive strength could be obtained components of sewage sludge ash. It exceeded more than double score 64.6 MPa of the Korean standard ($22.54MPa=229.7kg/cm^2$). Microstructure of solidified block for the different admixture was related to the compressive strength according to SEM analysis. Optimum mixing range of the sewage sludge ash to each binders were found to be 10~40% which can widly safely regulate the confined a long term compressive strength. The best binder of long term compressive strengh was revealed Geobond more than High Early Strength Portland cement and Micro cement. This study revealed the sewage sludge ash can be partial replacement of the inorganic binder & application block for recycling.

Development of Inorganic Binder Using Ash from Sewage Sludge Incinerator I (하수슬러지 소각재를 이용한 무기바인더 개발 I)

  • Lee, Hyun-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.843-850
    • /
    • 2014
  • This study investigated to recycle ash produced in the sewage sludge incinerator using reduction/stabilization. Nonsintering process was performed by binding cement, geobond and sand mixed with sewage sludge ash (SSA). Results showed that unconfined compressive strength could be obtained components of sewage sludge ash. it exceeded more than double score of the 22.54 Mpa ($229.7kg/cm^2$) Korean standard. chemical ingradients of the sewage sludge ash was mainly composed of $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO and others, which were similar to those of the each binders consisting cement and geobond. microstructure of solidified speceimen for the different admixture was related to the compressive strength according to SEM analysis. optimum mixing range of the sewage sludge ash to inorganic binder was found to be 10~40% which can widly safely regulate the confined compressive strength. This study revealed the sewage sludge ash can be partial replacement of the inorganic binder for recycling.

Understanding Alginate Fouling in Submerged Microfiltration Membrane System for Seawater Pretreatment (해수전처리를 위한 침지식 정밀여과 멤브레인 시스템에서 Alginate 파울링의 이해)

  • Jang, Hoseok;Kwon, Deaeun;Kim, Jeonghwan
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.55-61
    • /
    • 2016
  • Organic fouling observed in submerged membrane filtration as a pretreatment for seawater desalination increases energy consumption for membrane operation because of requiring frequent chemical cleaning and membrane replacement. In membrane pretreatment for seawater facing with algae blooms, membrane fouling was observed in submerged microfiltration using sodium alginate model compound which is one of the main components of extracellular polymeric substances. Without aeration, aglinate fouling increased with its concentration while aeration reduced the alginate fouling effectively regardless of its concentration tested. In the absence of aeration, alingate fouling tended to be decreased with increasing calcium concentration. However, this effectiveness was reduced by increasing sodium chloride concentration. At high concentration of sodium chloride and calcium similar to the seawater conditions, aeration reduced initial fouling. However, as time progressed, the effect of increased airflow rate on fouling reduction was not significant, implying that optimum airflow rate to control alginate fouling in submerged microfiltration can exist.

Characterizations of High Early-Strength Type Shrinkage Reducing Cement and Calcium Sulfo-aluminate by Using Industrial Wastes

  • Lee, Keon-Ho;Nam, Seong-Young;Min, Seung-Eui;Lee, Hyoung-Woo;Han, Choon;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.2
    • /
    • pp.215-221
    • /
    • 2016
  • In this study, the utilization of the by-products of various industries was examined using raw materials of CSA high-functional cement such as coal bottom ash, red mud, phosphate gypsum, etc. Technology to improve energy efficiency and reduce $CO_2$ was developed as part of the manufacturing process; this technology included lower temperature sintering ($150{\sim}200^{\circ}C$) than is used in the OPC cement manufacturing process, replacement of CSA cement with the main raw material bauxite, and a determination of the optimum mix condition. In order to develop CSA cement, a manufacturing system was established in the Danyang plant of the HANIL Cement Co. Ltd., in Korea. About 4,200 tons of low purity expansion agent CSA cement (about 16%) and about 850 tons of the lime-based expansion agent dead burned lime (about 8%) were produced at a rate of 60 tons per hour at the HANIL Cement rotary kiln. To improve the OPC cement properties, samples of 10%, 13%, and 16% of CSA cement were mixed with the OPC cement and the compressive strength and length variation rate of the green cement were examined. When green cement was mixed with each ratio of CSA cement and OPC cement, the compressive strength was improved by about 30% and the expansibility of the green cement was also improved. When green cement was mixed with 16% of CSA cement, the compressive strength was excellent compared with that of OPC cement. Therefore, this study indicates the possibility of a practical use of low-cost CSA cement employing industrial wastes only.

Determination of the Amino Acid Requirements and Optimum Dietary Amino Acid Pattern for Growing Chinese Taihe Silky Fowls in Early Stage

  • Li, Guanhong;Qu, Mingren;Zhu, Nianhua;Yan, Xianghua
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1782-1788
    • /
    • 2003
  • A mathematical model has been constructed to estimate the amino acid requirements for growing Taihe silky fowls in early stage. A requirement was taken as the sum of the needs for maintenance, for gain in carcass weight without feathers, and for the feathers. The maintenance requirement was considered to be the sum of the needs for replacing skin and intestinal losses and for the obligatory creatinine excretion in the urine. A comparative slaughter trial and nitrogen balance trials with growing and adult Taihe silky fowls, respectively, were conducted to estimate the parameters in the model. The amino acid requirements were then calculated with the constructed models. The results showed as following: the replacement needs for skin nitrogen loss was determined at 213.41 mg/d for adult male fowls (body weight 1.60 kg); creatinine excretion in these birds was 4.04 mg/d. when fed an nitrogen-free diets, the adult male fowls with body weight 1.60 kg excreted a total of 246.10 mg/d endogenous nitrogen. The net protein requirement for maintenance was estimated at $11.24mg/w_g{^{0.75}}/d$Per gram of body weight gain contained 27.18 mg carcass nitrogen for growing birds in early stage, but feathers nitrogen in per gram of body weight gain increased with age. The amino acid requirements for growing Taihe silky fowls were slightly higher than for starting and growing pullets, but lower than that of broiler chicks. The amino acid requirements patterns changed with weeks of age.

Effectiveness of fibers and binders in high-strength concrete under chemical corrosion

  • Nematzadeh, Mahdi;Fallah-Valukolaee, Saber
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.243-257
    • /
    • 2017
  • Investigating the properties and durability of high-strength concrete exposed to sulfuric acid attack for the purpose of its application in structures exposed to this acid is of outmost importance. In this research, the resistance and durability of high-strength concrete containing macro-polymeric or steel fibers together with the pozzolans of silica fume or nano-silica against sulfuric acid attack are explored. To accomplish this goal, in total, 108 high-strength concrete specimens were made with 9 different mix designs containing macro-polymeric and steel fibers at the volume fractions of 0.5, 0.75, and 1.0%, as well as the pozzolans of silica fume and nano-silica with the replacement levels of 10 and 2%, respectively. After placing the specimens inside a 5% sulfuric acid solution in the periods of 7, 21, and 63 days of immersion, the effect of adding the fibers and pozzolans on the compressive properties, ultrasonic pulse velocity (UPV), and weight loss of high-strength concrete was investigated and the respective results were compared with those of the reference specimens. The obtained results suggest the dependency of the resistance and durability loss of high-strength concrete against sulfuric acid attack to the properties of fibers as well as their fraction in concrete volume. Moreover, compared with using nano-silica, using silica fume in the fibrous concrete mix leads to more durable specimens against sulfuric acid attack. Finally, an optimum solution for the design parameters where the crushing load of high-strength fibrous concrete is maximized was found using response surface method (RSM).

Application of Soil Stabilization Technique for Shoulder Construction in Sri Lanka (스리랑카 길어깨 적용을 위한 안정처리 재료의 적용성 평가 연구)

  • Park, Ki Soo;Park, Hee Mun
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.21-26
    • /
    • 2018
  • PURPOSES : The objective of this study is to evaluate the application of soil stabilization method for soft shoulder construction in the iRoad Project of Sri Lanka. METHODS : Firstly, the quantitative analysis of soil strength improvement due to soil stabilization was done for soil samples collected from iRoad construction sites. Two types of soils were selected from iRoad Project sites and prepared for soil stabilization testing by the Road Development Authority. Secondly, the appropriate stabilizer was selected at given soil type based on test results. Two different stabilizers, ST-1 and ST-2, produced in Korea were used for estimating soil strength improvements. Finally, the optimum stabilizer content was determined for improving shoulder performance. The uniaxial compressive strength (UCS) test was conducted to evaluate the strength of stabilized soil samples in accordance with ASTM D 1633. The use of bottom ash as a stabilizer produced from power plant in Sri Lanka was also reviewed in this task. RESULTS : It is found from the UCS testing that a 3% use of soil stabilizer can improve the strength up to 2~5 times in stabilized soft shoulder soils with respect to unstabilized soils. It is also observed from UCS testing that the ST-1 shows high strength improvement in 3% of stabilizer content but the strength improvement rate with increase of stabilizer content is relatively low compared with ST-2. The ST-2 shows a low UCS value at 3% of content but the UCS values increase significantly with increase of stabilizer content. When using the ST-2 as stabilizing agent, the 5% is recommended as minimum content based on UCS testing results. Based on the testing results for bottom ash replacement, the stabilized sample with bottom ash shows the low strength value. CONCLUSIONS : This paper is intended to check the feasibility for use the soil stabilization technique for shoulder construction in Sri Lanka. The use of soil stabilizer enables to improve the durability and strength in soft shoulder materials. When applying the bottom ash as a soil stabilizer, various testings should be conducted to satisfy the specification criteria.