• 제목/요약/키워드: Optimum design technique

검색결과 582건 처리시간 0.025초

Robust Optimization with Static Analysis Assisted Technique for Design of Electric Machine

  • Lee, Jae-Gil;Jung, Hyun-Kyo;Woo, Dong-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2262-2267
    • /
    • 2018
  • In electric machine design, there is a large computation cost for finite element analyses (FEA) when analyzing nonlinear characteristics in the machine Therefore, for the optimal design of an electric machine, designers commonly use an optimization algorithm capable of excellent convergence performance. However, robustness consideration, as this factor can guarantee machine performances capabilities within design uncertainties such as the manufacturing tolerance or external perturbations, is essential during the machine design process. Moreover, additional FEA is required to search robust optimum. To address this issue, this paper proposes a computationally efficient robust optimization algorithm. To reduce the computational burden of the FEA, the proposed algorithm employs a useful technique which termed static analysis assisted technique (SAAT). The proposed method is verified via the effective robust optimal design of electric machine to reduce cogging torque at a reasonable computational cost.

연진자를 위한 무태공간의 최적화 (An optimum stage-enclosure configuration for performers)

  • 이병호;이희원
    • 한국음향학회지
    • /
    • 제1권1호
    • /
    • pp.19-26
    • /
    • 1982
  • n optimization technique is adapted to determine the stage enclosure configuration preferred by performers. The merit function which quantifies the ease of ensemble among the performers is derived from a set of qualitative conditions recommended by researchers of hall acoustics. The ray path tracing technique based on the modified method of images is used to analyze acoustical characteristics at any locations of performers in stage enclosure. The gradient search technique is employed to find the geometric parameters which maximmize the merit function. As an example, optimum stage enclosure configuration of the trio chamber music is obtained using the computer program developed. The developed technique can be used in the design of concert hall stage and also in forming a special enclosure with movable reflecting surfaces.

  • PDF

Initial Design Domain Reset Method for Genetic Algorithm with Parallel Processing

  • Lim, O-Kaung;Hong, Keum-Shik;Lee, Hyuk-Soo;Park, Eun-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1121-1130
    • /
    • 2004
  • The Genetic Algorithm (GA), an optimization technique based on the theory of natural selection, has proven to be a relatively robust means of searching for global optimum. It converges to the global optimum point without auxiliary information such as differentiation of function. In the case of a complex problem, the GA involves a large population number and requires a lot of computing time. To improve the process, this research used parallel processing with several personal computers. Parallel process technique is classified into two methods according to subpopulation's size and number. One is the fine-grained method (FGM), and the other is the coarse-grained method (CGM). This study selected the CGM as a parallel process technique because the load is equally divided among several computers. The given design domain should be reduced according to the degree of feasibility, because mechanical system problems have constraints. The reduced domain is used as an initial design domain. It is consistent with the feasible domain and the infeasible domain around feasible domain boundary. This parallel process used the Message Passing Interface library.

유전 알고리즘을 이용한 회전축계의 진동 최적설계 (Vibration Optimum Design of Rotor Systems Using Genetic Algorithm)

  • 최병근;양보석
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.645-653
    • /
    • 1997
  • For high performance rotating machinery, unstable vibrations may occur caused by hydrodynamic forces such as oil film forces, clearance excitation forces generated by the working fluid, and etc. In order to improve the availability one has to take into account the vibrations very accurately. When designing a rotating machinery, the stability behavior and the resonance response can be obtained by calculation of the complex eigenvalues. A suitable modifications of seal and/or bearing design may effectively improve the stability and the response of a rotor system. This paper deals with the optimum length and clearance of seals and bearings to minimize the resonance response(Q factor) and to maximize the logarithmic decrement in the operating speed under the constraints of design variables. Also, for an avoidance of resonance region from the operating speed, an optimization technique has been used to yield the critical speeds as far from the operating speed as possible. The optimization method is used by the genetic algorithm, which is a search algorithm based on the mechanics of natural selection and natural genetics. The results show that the optimum design of seals and bearings can significantly improve the resonance and the stability of the pump rotor system.

  • PDF

고효율을 위한 단일 실린더를 가진 점성구동 마이크로펌프의 최적설계 (Optimum Design of a Viscous-driven Micropump with Single Rotating Cylinder for Maximizing Efficiency)

  • 최형일;김종민;최동훈;맹주성
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1889-1896
    • /
    • 2003
  • In the microfluidic applications, viscous-driven pumping mechanism is a promising one since the viscous effect increases significantly as the size of device decreases, relative to the inertial effect. However, there exist a few drawbacks we have to improve such as low efficiency and small volume flow rate. In the present study, an optimum design synthesis is proposed to enhance the performance characteristics of the micropump with single rotating cylinder. First, the unstructured grid CFD method is described and validated by comparing its results to the previous results. Next, an automated optimum design synthesis tool is constructed by combining the aforementioned CFD analysis model with the mathematical optimization model. This technique is used to improve the performance characteristics of newly designed viscous-driven pump. The presented results show that the fluid dynamic optimization tool is robust and may be applied to other microfluidic device design applications.

유전알고리즘을 이용한 복합 적층보의 최적설계 (Optimum Design of Composite Laminated Beam Using GA)

  • 구봉근;한상훈;이상근
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.349-358
    • /
    • 1997
  • 본 논문은 복합 적층구조의 최적설계에 있어서 유전알고리즘(GA)의 응용성을 보여준다. 설계점들의 최기집단이 확률론적 과정에 의해 무작위로 생성되고, 설계점들의 개선을 위해 자연선택과 적자생존의 원리가 적용되었다. 유전알고리즘의 범용성 및 신뢰성 검증을 위해 5가지 검증 함수를 고려하였으며, 수치예에서 연속형 및 정수형 그리고 이산형 설계변수를 동시에 갖는 복합 적층 캔틸레버보의 최소 중량 설계가 외부 벌칙함수가 부가된 유전알고리즘에 의해 수행되었다. 설계 문제는 강도, 변위 그리고 고유진동수 제약조건을 포함하면서 다차 비선형성으로 정식화 되었다. 수치예의 결과에 대한 비교분석을 통해 유전알고리즘 탐색 기법이 높은 범용성을 지니면서 양질의 최적해를 매우 효과적으로 찾게됨을 보였다.

  • PDF

등제한조건을 이용한 목적함수에 대한 최적민감도 (Optimum Sensitivity of Objective Function Using Equality Constraint)

  • 신정규;이상일;박경진
    • 대한기계학회논문집A
    • /
    • 제29권12권
    • /
    • pp.1629-1637
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

등제한조건을 이용한 목적함수에 대한 최적민감도 (Optimum Sensitivity of Objective Function using Equality Constraint)

  • 이상일;신정규;박경진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.464-469
    • /
    • 2005
  • Optimum sensitivity analysis (OSA) is the process to find the sensitivity of optimum solution with respect to the parameter in the optimization problem. The prevalent OSA methods calculate the optimum sensitivity as a post-processing. In this research, a simple technique is proposed to obtain optimum sensitivity as a result of the original optimization problem, provided that the optimum sensitivity of objective function is required. The parameters are considered as additional design variables in the original optimization problem. And then, it is endowed with equality constraints to penalize the additional variables. When the optimization problem is solved, the optimum sensitivity of objective function is simultaneously obtained as Lagrange multiplier. Several mathematical and engineering examples are solved to show the applicability and efficiency of the method compared to other OSA ones.

  • PDF

철강 재료의 2축 비등방향 잔류응력 평가를 위한 연속압입시험의 최적조건 선정 (Optimum Selection of the Advanced Indentation Technique for the Evaluation of Non-equip-biaxial Residual Stress in Steel Materials)

  • 유승종;김주현;박주승;권동일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1774-1779
    • /
    • 2005
  • Most of materials receive force in using, therefore, the characteristics of materials must be considered in system design not to occur deformation or destruction. Mechanical properties about materials can be expressed as responsible level of material itself under the exterior operation. Main mechanical properties is strength, hardness, ductility and stiffness etc. Currently, among major measure facilities to measure such mechanical properties, advanced indentation technique has focused in industrial areas as reason of nondestructive and easy applications for mechanical tensile properties and evaluation of residual stress of materials. This study is to find the optimum experimental condition about residual stress advanced indentation technique for accurate analysis of the welded joint of steel materials through indentation load-depth curve obtained from cruciform specimen experiment. Optimum selection was applied to the welded joint of real steel materials to give non-equi-biaxial stress state and compared with general residual stress analyzing method for verification.

  • PDF

밀링 가공 공정에서 복합실험계획법을 이용한 최적 절삭조건 결정 (Determination of Optimal Cutting Conditions in Milling Process using Multiple Design of Experiments Technique)

  • 김용선;권원태
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.232-238
    • /
    • 2011
  • In the present study, Taguchi method is used to determine the rough region first, followed by RSM technique to determine the exact optimum value during milling on a machining center. A region reducing algorithm is applied to narrow down the region of the Taguchi method for RSM. The result from the Taguchi method is fed to train the artificial neural network (ANN), whose optimum value is used to drive the region reducing algorithm. The proposed algorithm is tested under different cutting condition and results show that the introduced algorithm works well during milling process. It is also shown that theoretically obtained optimal cutting condition is very close to experimentally obtained result.