Abstract
The Genetic Algorithm (GA), an optimization technique based on the theory of natural selection, has proven to be a relatively robust means of searching for global optimum. It converges to the global optimum point without auxiliary information such as differentiation of function. In the case of a complex problem, the GA involves a large population number and requires a lot of computing time. To improve the process, this research used parallel processing with several personal computers. Parallel process technique is classified into two methods according to subpopulation's size and number. One is the fine-grained method (FGM), and the other is the coarse-grained method (CGM). This study selected the CGM as a parallel process technique because the load is equally divided among several computers. The given design domain should be reduced according to the degree of feasibility, because mechanical system problems have constraints. The reduced domain is used as an initial design domain. It is consistent with the feasible domain and the infeasible domain around feasible domain boundary. This parallel process used the Message Passing Interface library.