• Title/Summary/Keyword: Optimum design factor

Search Result 493, Processing Time 0.038 seconds

Simulation of Design Factor Effects on Performance of Vacuum System (진공시스템 성능에 대한 설계인자 영향 전산모사)

  • Kim, Hyung-Taek;Jeong, Kwang-Pil
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.405-413
    • /
    • 2007
  • Effect of design factors on the performance of vacuum system was simulated for optimum design of system. In this investigation, the feasibility of modelling mechanism for $VacSim^{Multi}$ simulator was proposed. Simulation results of pumping design factor showed the possibilities of simulation fore-study for the detailed design factors. Simulation of roughing pump presented the expected pumping behaviors based on the specifications of commercial pump. Application of booster pump exhibited the high pumping efficiency for middle vacuum range. Combinations of optimum backing pump for diffusion and turbo vacuum system were obtained. And, the characteristics of process application of both systems were also acquired.

Simulation of Modeling Characteristics of Pumping Design Factor on Vacuum System

  • Kim, Hyung-Taek;Cho, Han-Ho
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.1-7
    • /
    • 2016
  • Recently, with the development of advanced thin film devices comes the need for constant high quality vacuum as the deposition pressure is more demanding. It is for this reason our research seeks to understand how the variable design factors are employed in such vacuum systems. In this study, the effects of design factor applications on the vacuum characteristics were simulated to obtain the optimum design modeling of variable models on an ultra high vacuum system. The commercial vacuum system simulator, $VacSim^{(multi)}$, was used in our investigation. The reliability of the employed simulator was verified by the simulation of the commercially available models of ultra high vacuum system. Simulated vacuum characteristics of the proposed modeling aligned with the observed experimental behavior of real systems. Simulated behaviors showed the optimum design models for the ideal conditions to achieve optimal pressure, pumping speed, and compression ratio in these systems.

Optimum Design of Multi-Stacking Current Lead Using HTS Tapes (고온초전도 테이프를 이용한 적층형 전류 도입선의 최적설계)

  • 설승윤;김민수;나필선
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.35-39
    • /
    • 2001
  • The optimum cross-sectional area profile of gas-cooled high-temperature superconductor(HTS) current lead is analyzed to have minimum helium boil-off rate. The conventional constant area HTS lead has much higher helium consumption than the optimum HTS lead considered in this study. The optimum HTS lead has variable cross-sectional area to have constant satiety factor. An analytical formula of optimum shape of lead and temperature profile are obtained. For multi-stacking HTS current leads, the optimum tape lengths and minimum heat dissipation rate are also formulated. The developed formulations are applied to the Bi-2223 material, and the differences between constant area, constant safety-factor, and multi-stacking current leads are discussed.

  • PDF

Study on Optimum Shape of Expansion Joint (신축조인트의 최적화형상에 대한 연구)

  • Han, Moonsik;Ahn, Junghyun;Yang, Chulho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.154-158
    • /
    • 2013
  • Expansion joint has been utilized in many areas including automotive bellows for exhaust system. Usage of expansion joint has been increased due to its inherent flexibility and excellent anti-vibration property. Simple shape of expansion joint is modeled to understand the behavior of joint system. 27 design cases using 3 design factors with 3 levels are constructed by design of experiment. Each case is simulated to find the most influential design factors. Response for this study, maximum stress in the expansion joint, has been used to determine main design factors of joint. Among the 3 design factors, factor B has affected greatly a response in the formation of optimum shape of joint. Also, interaction factor, $A{\times}B$, has also showed its influence to the response of joint. This study showed that design of experiment combined with finite element analysis could be used in the design decision process effectively in the design of expansion joint.

Selection of the Optimum Seaming Condition for Spin Drum Using Statistical Method (통계적 기법을 이용한 스핀드럼의 시밍 최적조건 선정)

  • Kim, Eui-Soo;Lee, Jung-Min;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • There are being a lot of studies for achievement of high speed Dehydration, high-strength and Lightweight of washing machine in the latest washing machine business. It is essential that strength of mechanical press-Joining (MPJ) for spin drum is improved to attain that target. MPJ of spin drum is composed of seaming and caulking process. Because Seaming process of MPJ has various design factors such as thickness, bending radius, seaming width, caulking press width and the dynamic factor such as multistage plastic working, elastic recovery, residual stress, the optimum conditions can't be easily determined. Using a design of experiment (DOE) based on the FEM (Finite Element Method), which has several advantages such as less computing, high accuracy performance and usefulness, this study was performed investigating the interaction effect between the various design factor as well as the main effect of the each design factor during drum MPJ and proposed optimum condition using center composition method among response surface derived from regression equation of simulation-based DOE.

Rotor Design of a Segmented Type Synchronous Reluctance Motor to Improve Torque and Power Factor (단편형 동기 릴럭턴스 전동기의 토크 및 열률 개선을 위한 회전자 설계)

  • Jang, Seok-Myeong;Park, Byeong-Im;Lee, Seong-Ho;Lee, Jung-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.6
    • /
    • pp.263-272
    • /
    • 2001
  • The paper presents the design of a segmented type synchronous reluctance motor(SynRM) to increase its torque and power factor. The main feature of a segmented type synchronous reluctance motor is the flux barrier. Thus, the design process to find optimum value of various geometric parameters including flux barrier will be explained. Optimum value of each parameter is found where the d, q inductance difference and saliency ratio are maximized because these inductance characteristics are related to torque and power factor. Finite Element Analysis will be used to simulate motor characteristics. Analysis results of redesigned SynRM show higher saliency ratio over 10 and improved value of maximum power factor.

  • PDF

Louvered Fin Heat Exchanger : Optimal Design and Numerical Investigation of Heat and Flow Characteristics (루버휜 최적 설계 및 최적 모델의 열유동 특성 분석)

  • Ryu, Kijung;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.12
    • /
    • pp.654-659
    • /
    • 2013
  • This paper presents a numerical optimization of louvered fins to enhance the JF factor in terms of the design parameters, including the fin pitch, the number of louvers, the louver angle, the fin thickness, and the re-direction louver length. We carried out a parametric study to select the three most important parameters affecting the JF factor, which were the fin pitch, number of louvers, and the louver angle. We optimally designed the louvered fin by using 3rd-order full factorial design, the kriging method, and a micro genetic algorithm. Consequently, the JF factor of the optimum model increased by 16% compared to that of the base model. Moreover, the optimum model reduced the pressure drop by 17% with a comparable heat transfer rate.

Optimum Design of an Indoor Package Air-Conditioner's Flow Path by Taguchi Method (다구찌 방법에 의한 PAC 실내기 유로의 최적설계)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2014
  • In this study, the optimum design process of an indoor package air-conditioner (PAC) was implemented by Taguchi method. The goal of this study is to obtain the best set condition of each control factor composing of an indoor PAC. The number of revolution of a double inlet sirocco fan installed in an indoor PAC was measured by the orthogonal array of $L_{18}(2^3{\times}3^4)$ and analysed by using the-smaller- the-better characteristic among the static characteristic analyses. As a result, the optimum condition of an indoor PAC was found as a set of when the cost of production, assembling and working conditions were considered. Moreover, the number of revolution of a double-inlet sirocco fan used for an optimum condition was reduced about 8.5% more than that of a standard condition for the target flowrate of $18.5m^3/min$.

Vibration Optimum Design of Rotor Systems Using Genetic Algorithm (유전 알고리즘을 이용한 회전축계의 진동 최적설계)

  • 최병근;양보석
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.645-653
    • /
    • 1997
  • For high performance rotating machinery, unstable vibrations may occur caused by hydrodynamic forces such as oil film forces, clearance excitation forces generated by the working fluid, and etc. In order to improve the availability one has to take into account the vibrations very accurately. When designing a rotating machinery, the stability behavior and the resonance response can be obtained by calculation of the complex eigenvalues. A suitable modifications of seal and/or bearing design may effectively improve the stability and the response of a rotor system. This paper deals with the optimum length and clearance of seals and bearings to minimize the resonance response(Q factor) and to maximize the logarithmic decrement in the operating speed under the constraints of design variables. Also, for an avoidance of resonance region from the operating speed, an optimization technique has been used to yield the critical speeds as far from the operating speed as possible. The optimization method is used by the genetic algorithm, which is a search algorithm based on the mechanics of natural selection and natural genetics. The results show that the optimum design of seals and bearings can significantly improve the resonance and the stability of the pump rotor system.

  • PDF

Optimum Design of Journal Bearing Using Simulated Annealing Method (Simulated Annealing법을 이용한 저널베어링의 최적설계)

  • 구형은;송진대;양보석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.121-126
    • /
    • 2003
  • This paper describes the optimum design for journal bearing by using simulated annealing method. Simulated annealing algorithm is an optimum design method to calculate global and local optimum solution. Dynamic characteristics of a journal bearing are calculated by using finite difference method (FDM), and these values are used for the procedure of journal bearing optimization. The objective is to minimize the resonance response (Q factor) of the simple rotor system. Bearing clearance and length to diameter ratio are used as the design variables.

  • PDF