• Title/Summary/Keyword: Optimum Tool Design

Search Result 282, Processing Time 0.027 seconds

The Optimum Design of a Spatial 3-DOF Manipulator Using Axiomatic Design (공리적 설계를 이용한 공간형 3자유도 기구의 최적설계)

  • Han Seog Young;Yi Byung-Ju;Kim Seon Jung;Kim Jong O;Chung Goo Bong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.6
    • /
    • pp.52-60
    • /
    • 2005
  • Ultra-precision positioning systems basically require high natural frequency and sufficient workspace. To cope with this requirement, flexure hinge mechanisms have been developed. However, previous designs are difficult to satisfy the functional requirements of the system due to difficulty in modeling and optimization process applying fur the independent axiomatic design. Therefore, this paper suggests a new design and design procedure based on semi-coupled, axiomatic design. A spatial 3-DOF parallel type micro mechanism is chosen aa an exemplary device. Based on preliminary kinematic analysis and dynamic modeling of the system, an optimum design is conducted. To check the effectiveness of the optimal parameters obtained by theoretical approach, simulation has been performed by FEM.

Development of The Tunnel Type Locating Drill Jig by Practical and Adaptive Tooling

  • Sim, Sung-Bo;Lee, Sung-Taeg
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.185-189
    • /
    • 2001
  • In order to prevent the production defects the optimum design of product, jig and fixture putting in the field is very significant manufacturing method. Drilling Jig is the device according to industrial demand for multi manufacturing products on the growing at alarming rate. In the field of design and making for machine tool working, welding, assembling with jig and fixture for mass production is a specific division. They require analysis of many kinds of important factors, theory and practice of machine tool operating process and jig & fixture structure, machining condition for tool making, tool materials, heat treatment of jig & fixture components, know-how and so on. In this study we designed and constructed a drilling jig of mass production and performed tryout under the Auto CAD, Auto Lisp database, that we made by database, and window environment. Especially this study is reveals with the analysis of part drawing, jig planning, jig design etc, and then the result of drill jig's making try out.

  • PDF

Development of Drilling Jig by Practical and Adaptive Tooling System(Part 1) - System Analysis of Part Drawing and Jig Design

  • Sim, Sung-bo;Lee, Sung-Taeg
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.104-108
    • /
    • 2000
  • Drilling Jig is the device according to industrial demand for multi manufacturing products on the growing at alarming rate. In the field of design and making for machine tool working, welding, assembling with jig and fixture for mass production is a specific division. In order to prevent the production defects the optimum design of product, fig and fixture putting in the field is very significant manufacturing method. They require analysis of many kinds of important factors, theory and practice of machine tool operating process and its phenomena, jig & fixture structure, machining condition for tool making tool materials, heat treatment of jig & fixture components, know-how and so on. In this study we designed and constructed a drilling jig of mass production and performed tryout under the Auto CAD, database, and window environment. Especially Part1 of this study is reveals with the analysis of part drawing, jig planning, jig design etc.

  • PDF

Study on the optimal design for Planetary Gear Train using simulated annealing (시뮬레이티드 어닐링을 이용한 유성치차열의 최적설계에 관한 연구)

  • 최용혁;정태형;이근호
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.172-177
    • /
    • 2004
  • A planetary gear trains has characteristics in compactness, power transformation ability and constant meshing. Usability is increased in applications of auto transmission and industrial gearbox. Study on optimum design of planetary gear train has been progressed on minimization of weight, miniaturization of planetary gear train and improvement of high strength. There are demands of study for the planetary gear train required long lift estimation In this wort being considered life, strength, intereference, contact ratio and aspect ratio, the optimum design algorithm is proposed to reduce the volume of planetary gear train with transferring the same amount of power. In the design of algorithm for planetary gear train, the determination of teeth number is separated to achieve simplicity and the simulated annealing method as a global optimal technique is used for optimal design method.

  • PDF

Selection of Optimum Machining Condition of Dry fuming Using Taguchi Method (다구찌 실험계획법을 이용한 드라이 선삭가공의 최적 가공조건 선정)

  • 송춘삼;김준현;김주현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.19-24
    • /
    • 2003
  • Recently, various efforts to make more speedy and precision machine tool to improve productivity and also various efforts to solve environmental problem are going on, so that dry cutting in manufacturing industry, which needs environmental conscious design and development of manufacturing technique, is becoming a very important assignment to solve. Because dry cutting does not use cutting fluid, we need other methods that can be used instead of cutting fluid, which does cooling, lubricating, chip washing, and anti-corrosion. Especially, because turning is a continuous work, the consideration of tool life and surface roughness due to continuous heat and poor lubrication is important. The purposes of this paper are the consideration of how well the compressed air can work instead of cutting fluid, and also the development of the method to select the optimum machining condition by the minimum numbers of experiments through the Taguchi method.

  • PDF

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

Optimum Design of a Y-channel Microcmixer for Enhanced Mixing (혼합 개선을 위한 Y-채널 마이크로 믹서의 최적설계)

  • Shin Yong-Su;Choi Hyung-Il;Lee Dong-Ho;Lee Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.302-309
    • /
    • 2006
  • Effective mixing plays a crucial role in microfluidics for biochemical applications. Owing to the small device scale and its entailing the low Reynolds number, the mixing in microchannels proceeds very slowly. In this work, we optimize the configuration of obstacles in the Y-channel mixer in order to attain maximum mixing efficiency. Before the optimum design, mixing characteristics are investigated using unstructured grid CFD method. Then, the analysis method is employed to construct the approximate analysis model to be used in the optimization procedure. The main optimization tool in the present work is sequential quadratic programming method. Using this approximate optimization procedure, we may obtain the optimum layout of obstacles in the Y-channel mixer in an efficient manner, which gives the maximum mixing efficiency.

Optimum Design of Multi-Stage Gear Drive Using Genetic Algorithm Mixed Binary and Real Encoding (이진코딩과 실수코딩이 조합된 유전 알고리즘을 이용한 다단 기어장치의 최적설계)

  • 정태형;홍현기;이정상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.118-123
    • /
    • 2004
  • In this study, genetic algorithm mixed binary and real encoding is proposed to deal with design variables of various types. And that is applied to optimum design of Multi-stage gear drive. Design of pressure vessel which is mixed discrete and continuous variables is applied to verify reasonableness of proposed genetic algorithm. The proposed genetic algorithm is applied for the gear ratio optimization and the volume minimization of geared motor which is used in field. In result, it shows that the volume has decreased about 8% compared with the existing geared motor.

  • PDF

Optimum Design of Draw-bead Force in Sheet Metal Stamping using Rigid-plastic FEM and Responses Surface Methodology (강소성 유한요소해석과 반응표면분석법을 이용한 박판성형공정에서의 드로우 비드력 최적설계)

  • Kim, Se-Ho;Huh, Hoon;Tezuka, Akira
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.143-148
    • /
    • 1999
  • Design optimization is performed to calculated the draw-bead force for satisfying the design re-quirements. For an analysis tool a rigid-plastic finite element method with modified membrane element is adopted. response surface methodology is utilized for constructing the approximation surface for the optimum searching of draw bead force in sheet metal forming process. the algorithm developed is ap-plied to a design of the draw bead forces in a deep drawing process. The results show that the design of process parameters is applicable in complex metal forming analysis. It is also noted that the present algo-rithm enhances the stable optimum solution with small times of optimization iteration.

  • PDF