• 제목/요약/키워드: Optimum Thermal Design

검색결과 308건 처리시간 0.027초

복합화력 발전플랜트의 근사 최적 열설계 해석 (Approximate Optimum Thermal Design Analysis of Combined Cycle Power Plant)

  • 전용준;신흥태;이봉렬;김동섭;노승탁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.782-787
    • /
    • 2001
  • An optimum thermal design analysis of the combined cycle power plant with triple pressure heat recovery steam generator was performed by the numerical simulation. The optimum design module used in the paper is DNCONF, a function of IMSL Library, which is widly known as a method to search for the local optimum. The objective function to be minimized is the cost of total power plant including the steam turbine power enhancement premium. The result of this paper shows that the cost reduces if the design point of power plant becomes the local optimum, and many calculations at various initial conditions should be carried out to get the value near the global optimum.

  • PDF

이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계 (Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package)

  • 남현욱
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.

중광도 LED항공장애등 등구의 최적설계프로세서 확립에 관한 연구 (A Study on the Construction of the Optimum Design Process of Medium Intensity LED Aviation Obstacle Light)

  • 김성철;장정원
    • 한국전기전자재료학회논문지
    • /
    • 제21권1호
    • /
    • pp.35-43
    • /
    • 2008
  • Aviation obstacle lights including controller for the safe night aviation service have applied to high voltage transmission line of which height is from $60{\sim}180 m$, Fresnel lens made by Augustine Fresnel have been applied to light houses, These Fresnel lens were applied to aviation obstacle lights and have been universally used, It was reported that Fresnel lens for aviation obstacle light was used in the first place in Korea in 1987, LEDs have recently been applied to aviation obstacle lights, So, the optimum physical design is essential to the design of aviation obstacle light. In this study, optical and three dimensional modeling of LED module and globe lens were performed, And thermal analysis due to LED thermal source and service thermal condition in high voltage transmission line was performed and was analyzed comparing with experiments, The optimum design process of medium intensity LED aviation obstacle lights was constructed with three dimensional modeling, thermal analysis, and thermal experimental technique.

최소 열변형을 위한 자동차 디스크 브레이크 단면형상의 다구찌기법 기반 최적설계 (Optimization of an Automotive Disc Brake Cross-section with Least Thermal Deformation by Taguchi Method)

  • 김철;하태준
    • 한국자동차공학회논문집
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2016
  • Optimum cross-sectional shape of an automotive disc brake was developed based on FEM thermal analyses and the Taguchi method. Frictional heat flux and convection heat transfer coefficients were first calculated using equations and applied to the disc to calculate accurate temperature distribution and thermal deformations under realistic braking conditions. Maximum stress was generated in an area with highest temperature under pads and near the hat of ventilated disc and vanes. The SN ratio from Taguchi method and MINITAB was applied to obtain the optimum cross-sectional design of a disc brake on the basis of thermal deformations. The optimum cross-section of a disc can reduce thermal deformation by 15.2 % compared to the initial design.

철도차량용 휠 플레이트의 응력해석 및 형상설계에 관한 연구(2) (A Study on the Shape Design and Stress Analysis of Wheel Plate for Rolling Stock (2))

  • 성기득;양원호;조명래;정기현
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.221-229
    • /
    • 2001
  • The mechanical stress due to the wheel-rail contact and thermal stress due to the drag braking increase the incidence of wheel failure. So, firstly, stress analyses(mechanical, thermal and combined stress) of wheel plate are performed using 3-dimensional finite element method(FEM). Secondly, the optimum design of wheel plate ;s investigated in order to reduce weight of the wheel based on results of stress analysis. The optimum design is peformed using 2-dimensional axisymmetric F.E. model and its results are verified by 3-dimensional F. E. model.

  • PDF

철도차량용 휠 플레이트의 응력해석 및 형상설계에 관한 연구 (2) (A Study on the Shape Design and Stress Analysis of Wheel Plate for Rolling Stock (2))

  • 성기득;양원호;조명래;정기현;김철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.351-356
    • /
    • 2000
  • The mechanical stress due to the wheel-rail contact and thermal stress due to the drag braking increase the incidence of wheel failure. So, firstly, stress analyses(mechanical, thermal and combined stress) of wheel plate are performed using 3-dimensional finite element method(FEM). Secondly, the optimum design of wheel plate is investigated in order to reduce weight of the wheel based on results of stress analysis. The optimum design is peformed using 2-dimensional axisymmetric F.E. model and its results are verified by 3-dimensional F. E. model.

  • PDF

박용(舶用) 중속(中速) 디젤엔진 피스톤의 형상최적설계(形狀最適設計) (The Shape Optimal Design of Marine Medium Speed Diesel Engine Piston)

  • 이준오;성활경;천호정
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.59-70
    • /
    • 2008
  • Polynomial is used to optimize crown bowl shape of a marine medium speed diesel engine piston. The primary goal of this paper is that it's for an original design through a thermal stress and highest temperature minimum. Piston is modeled using solid element with 6 design variables defined the positional coordinate value. Global optimum of design variables are found and evaluated as developed and integrated with the optimum algorithm combining genetic algorithm(GA) and tabu search(TS). Iteration for optimization is performed based on the result of finite element analysis. After optimization, thermal stress and highest temperature reduced 0.68% and 1.42% more than initial geometry.

Sensitive analysis of design factor for the optimum design of PVT system

  • Jeong, Yong-Dae;Nam, Yujin
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.5-11
    • /
    • 2015
  • Purpose: Recently, renewable energy system has been widely used to reduce the energy consumption and CO2 emission of building. A photovoltaic/thermal(PVT) system is a kind of efficient energy uses, which is combined with photovoltaic module and solar thermal collector. PVT system removes heat from PV module by through thermal fluid to raise the performance efficiency of the PV system. However, though PVT system has the merit of the improved efficiency in theoretical approach, there have been few performance analysis for PVT system using the dynamic energy simulation. In this study, in order to establish the optimum design method of this system, simulation was conducted by using individual system modules. Method: For the dynamic simulation, TRNSYS17 was used and local weather data was utilized. Furthermore, the system performance in various installation condition was calculated by case studies. Result: As a result, the amount of electric generation and heat production in each case was found by the simulation. The gap of system performance was also evident according to the installation condition.

열탄성 거동을 나타내는 다층 실린더의 최적설계 (Optimum Design of Thermoelastic Multi-Layer Cylindrical Tube)

  • 조희근;박영원
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.179-188
    • /
    • 2000
  • Multi-disciplinary optimization design concept can provide a solution to many engineering problems. In the field of structural analysis, much development of size or topology optimization has been achieved in the application of research. This paper demonstrates an optimum design of a multi-layer cylindrical tube which behaves thermoelastically. A multi-layer cylindrical tube that has several different material properties at each layer is optimized within allowable stress and temperature range when mechanical and thermal loads are applied simultaneously. When thermal loads are applied to a multi-layer tube, stress phenomena become complicated due to each layer's thermal expansion and the layer thicknesses. Factors like temperature; stress; and material thermal thicknesses of each tube layer are very difficult undertaking. To analyze these problems using an efficient and precise method, the optimization theories are adopted to perform thermoelastic finite element analysis.

  • PDF

열적안정성을 위한 평판-휜형 방열판 최적설계 (Design Optimization of Plate-Fin Type Heat Sink for Thermal Stability)

  • 박경우;최동훈;이관수;김양현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.43-48
    • /
    • 2003
  • In this study the optimization of plate-fin type heat sink for the thermal stability is performed numerically. The optimum design variables are obtained when the temperature rise and the pressure drop are minimized simultaneously. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by using the sequential quadratic programming (SQP) method which is widely used in the constrained nonlinear optimization problem. The results show that when the temperature rise is less than 34.6 K, the optimal design variables are as follows; $B_{1}$ = 2.468 mm, $B_{2}$ = 1.365 mm, and t = 10.962 mm. The Pareto optimal solutions are also presented for the pressure drop and the temperature rise.

  • PDF