• Title/Summary/Keyword: Optimum Temperature

Search Result 6,352, Processing Time 0.033 seconds

The Optimum Temperature of Brine Heating System for LNG Storage Tank (LNG 저장탱크용 Brine Heating System의 최적온도 설정)

  • Oh, B.T.;Hong, S.H.;Yang, Y.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.361-366
    • /
    • 2001
  • The purpose of installation of the brine heating system for LNG storage tank is the prevention of ground freezing. If the ground of LNG tank areas is frozen, it is caused by safety problems. The design of brine heating system for LNG storage tank which is constructing in our country is not well considered about domestic weather conditions and economical efficiency. Therefore, this paper reports on the study of the optimized temperature of inside pipes and cooling process through the transient analysis by using the existing brine heating system.

  • PDF

Minimum Heat Dissipation of HTS Current Lead Having Partial Current Sharing Region (일부 전류분류영역을 가짐으로서 최소 열손실을 갖는 초전도 전류도입선)

  • Seol, S.Y.;Her, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.131-136
    • /
    • 2001
  • In this paper, a high-temperature superconductor(HTS) current lead operating in current sharing mode is described. The minimum heat dissipation and the optimum safety factor(cross-sectional area) is obtained analytically for partial current sharing HTS leads. It is assumed that the current lead is in conduction cooled state, and the sheath material is the alloy of silver and gold. The reduced cross-sectional area results partial current sharing state, and consequently reduces conduction heat transfer, but the Joule heat generation is increased. The optimized HTS current lead is different from the conventional copper leads. In the copper leads, the minimum heat dissipation is obtained for the zero gradient of temperature at warm end. However, the temperature gradient at warm end is not zero when the HTS lead operates at minimum dissipation state.

  • PDF

A Thermodynamic Calculation of Equilibrium Concentration for the CVD of SiC (SiC의 화학증착에 대한 열역학적 평형농도계산)

  • So, Myoung-Gi
    • Journal of Industrial Technology
    • /
    • v.5
    • /
    • pp.73-79
    • /
    • 1985
  • Thermodynamic calculation for the CVD of SiC from methyltrichlorosilane(MTS) was done in some range of deposition condition to identify optimum condition. The results show that the most considerable chemical species are chloride and chlorosilane for silicon source and methane and acetylene for carbon source. In order to yield single phase ${\beta}$-SiC it is believed that optimum temperature range is between 1500 and $1700^{\circ}k$. With increasing temperature, stable phase is changed from Si+SiC phase to C+SiC phase. It is believed because equilibrium concentration of silicon source decrease and equilibrium concentration of carbon source increases with increasing temperature.

  • PDF

Optimum Design of the Heating Equipment by Influence of Wind Speed at Cryogenic Temperature (극저온에서 풍속의 영향에 따른 발열기자재의 최적설계)

  • Cho, Hyun Jun;Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.463-479
    • /
    • 2020
  • Purpose: The purpose of this study is to evaluate the performance of heating equipments by implementing the extreme environment in which ships navigating the ice zone are exposed and to study and apply the experimental method to infer the optimized design for each factors. Methods: It is required to verify by analysis and experiment how the environment with low temperature and wind speed implemented through the test facility affects the heating walk-way and The optimum design of the heating walk-way in that extreme environment is derived using the Taguchi technique. Results: The results of this study are as follows; It was found the effect on the condition of each factor and derive optimized conditions that satisfy the performance condition of the heating walk-way in extreme use environment. Conclusion: Ships operating in Polar waters require reliable and durable facilities for all environments during sailing.

Hygrothermal Cracking Analysis of Plastic IC Package (플라스틱 IC 패키지의 습열 파괴 해석)

  • 이강용;양지혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.1
    • /
    • pp.51-59
    • /
    • 1998
  • The purposes of the paper are to consider the failure phenomenon based on delamination and crack when the encapsulant of plastic IC package under hygrothermal loading in the IR soldering process is on elastic and viscoelastic behavior due to the temperature and to show the optimum design using fracture mechanics. The model for analysis is the plastic SOJ package with a dimpled diepad. The package model with the perfect delamination between chip and diepad is chosen to estimate the resistance to fracture by calculating J-integrals in low temperature and C(t)-integrals in high temperature with the change of the design under hygrothermal loading. The optimum design to depress the delamination and crack in the plastic IC package is presented.

  • PDF

Design Optimization of Plate-Fin Type Heat Sink for Thermal Stability (열적안정성을 위한 평판-휜형 방열판 최적설계)

  • Park, Kyoung-Woo;Choi, Dong-Hoon;Lee, Kwan-Soo;Kim, Yang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.43-48
    • /
    • 2003
  • In this study the optimization of plate-fin type heat sink for the thermal stability is performed numerically. The optimum design variables are obtained when the temperature rise and the pressure drop are minimized simultaneously. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by using the sequential quadratic programming (SQP) method which is widely used in the constrained nonlinear optimization problem. The results show that when the temperature rise is less than 34.6 K, the optimal design variables are as follows; $B_{1}$ = 2.468 mm, $B_{2}$ = 1.365 mm, and t = 10.962 mm. The Pareto optimal solutions are also presented for the pressure drop and the temperature rise.

  • PDF

A Study on the Oxidation of Carbon Monoxide for Exhaust of Car Engine by the $LaSrNiCoO_3$ Low Noble Metal Catalyst (저귀금속 $LaSrNiCoO_3$ 촉매에 의한 자동차 배기중의 일산화탄소의 산화반응에 관한 연구)

  • 이근배;이석희
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.6 no.1
    • /
    • pp.57-72
    • /
    • 1990
  • The oxidation of carbon monoxide on a catalyst, $LaSrNiCoO_3$ was investigatigated with a plug flow system. Kinetic quantities such as reaction-rate, reaction order and Arhenius-parameters at various reactor temperature from 200$^\circ$C to 300$^\circ$C were determined. Also, the optimum condition for the oxidation of carbon monoxide with this catalyst was determined and are as follows. Partial pressure of oxigen ; 428mmHg Partial pressure of carbon monoxide ; 332mmHg Mixed moral ratio of oxigen and Carbon monoxide ; 1.3 : 1 Total gas flow ; 224ml/min Reaction temperature ; 340$^\circ$C The reaction kinetic equation at the optimum condition, temperature range from 200$^\circ$C to 340$^\circ$C, are as follow. $$ $v = Ae^{6.5Kcal/RT} [CO]^{0.93 \sim 0.98} [O_2]^{0.42 \sim 0.50}$ $$ In addition to this, numerical calculation were performed to evaluate the mass and heat transfer effect on this system.

  • PDF

Effect of Spraying Conditions in Flame Spraying of Ni-Cr Base Self Fluxing Alloy on Mild Steel (가스용사에 의한 Ni-Cr 기 자용성합금 용사 의 특성에 미치는 용사조건의 영향)

  • 배종규;박경채;정인상
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.1
    • /
    • pp.26-42
    • /
    • 1989
  • It has between investigated that the optimum spaying conditions, such as, spraying distance, fusing temperature and fusing time, ect, in a Ni-cr base self fluxing alloy sprayed on the mild steel substrate by oxygen-acetylenc flame spraying. Sprayed specimens on various conditions were fuused in a vacuum furnace and the results were as follows. The optimum spraying condition for excellent coating layer are obtained under spraying distances, fusing temperature and fusing and time ; 180~240mm,1050~110$0^{\circ}C$and 15~30min, respectively. The adhesive strength and surface hurface hardness of the as sprayed specimens were very low by mechanical bonding becaus of the diffusion layer during process. The carbides and borides and formed in the sprayed coating layer and densification of the layer was resulted from the elimination of pores and oxides. The hardness of sprayed coating layer, particularly in the high temperature, was superior to ordinary tool steels.

  • PDF

Optimal Synthesis Conditions of Hydrotalcite (II) (히드로탈시트의 최적 합성조건 (II))

  • 신화우;박형민
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.23-28
    • /
    • 2001
  • Hydrotalcite was prepared by reacting with sodium carbonate, magnesium hydroxide and aluminum chloride solutions in this study. The optimum synthesis conditions based on the yield of the product were established by applying Box-Wilson experimental design. It was found that the optimum synthesis conditions of hydrotalcite were as follows ; reacting temperature : 63~9$0^{\circ}C$, concentration of reactant solution : 18.20~19.82%, molar concentration ratio of two reactants [Mg(OH)$_2$] / (AICl$_3$.6$H_2O$) : 6.0, temperature of washing water : 29.0-34.4$^{\circ}C$, drying temperature : 56-77.6$^{\circ}C$. The physicochemical properties of hydrotalcite as medicine were studied by use of chemical analysis, bulk volume test and acid consuming capacity measurements.

  • PDF

Study on the Hemolysin from Marine V. vulnificus (해양 V. vulnificus의 Hemolysin에 관한 연구)

  • 이봉헌;박흥재
    • Journal of Environmental Science International
    • /
    • v.6 no.3
    • /
    • pp.225-229
    • /
    • 1997
  • A halophilic V. vulnificus is an estuarine microorganism that has been associated with fatal wound Infection and life-threatening septicemia. Hemolysin is defined as toxic substance produced by various species of bacteria Including V. vulnificus. Hemolysin from marine V. vulnificus was purified and the effect of pH, temperature. metal ion on the activity of hemolysin, and thermostability of hemolysin were tested in this study. Hemolysin iysed the sheep red blood cell and the optimum pH was 8.0, the optimum temperature was 4$0^{\circ}C$, and $K^+$ increased but $Mn^{2+}$ decreased the hemolyic activity of hemolysin, but hemolysin was unstable to heat.

  • PDF