• Title/Summary/Keyword: Optimum Production Conditions

Search Result 1,056, Processing Time 0.025 seconds

Optimization of Interesterification Reaction for the Continuous Production of trans-Free Fat in a Packed Bed Enzyme Bioreactor with Immobilized Lipase (고정화 리파제를 이용한 충진형 효소생물반응기 내에서의 무-트랜스 유지 연속 생산을 위한 에스테르 교환 반응의 최적화)

  • Kim, Sang-Woo;Park, Kyung-Min;Ha, Jae-Uk;Lee, Jae-Hwan;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2009
  • Epidemiological studies showed that high trans-fat consumption is closely associated with getting the risks of cardiovascular disease. The objective of this study was to produce trans-free fat through lipase-catalyzed interesterification, as a substitute for the cream margarine commonly used in industry. Optimum conditions for interesterification in a packed bed enzyme bioreactor (PBEB) were determined using response surface methodology (RSM) based on central composite design. Three kinds of reaction variables were chosen, such as substrate flow rate (0.4-1.2 mL/min), reaction temperature (60-70$^{\circ}C$), and ratio of fully hydrogenated canola oil (FHCO, 35-45%) to evaluate their effects on the degree of interesterification. Optimum conditions from the standpoint of solid fat content (SFC) were found to be as follows: 0.4 mL/min flow rate, 64.7$^{\circ}C$ reaction temperate, and 42.8% (w/w) ratio of FHCO, respectively. The half-life of immobilized lipase in PBEB with two stages at 60$^{\circ}C$ ($1^{st}$ stage) and 55$^{\circ}C$ ($2^{nd}$ stage) was about more than 30 days as estimated by extrapolating the incubation time course of tristearoyl glycerol (TS) conversion, whereas the half-life of the enzyme in PBEB with single stage at 65$^{\circ}C$ was only about 15 days. Finally, the results from SFC analysis suggest that trans-free fat produced in this study seems to be a suitable substitute for the cream margarine commonly used in industry.

Optimization of Separation Process of Bioflavonoids and Dietary Fibers from Tangerine Peels using Hollow Fiber Membrane (중공사 막을 이용한 감귤 과피 bioflavonoids 분리 및 식이 섬유 회수 공정 최적화)

  • Lee, Eun-Young;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.151-160
    • /
    • 1998
  • Tangerine peel is mostly discarded as waste in citrus processing. However, tangerine peel contains besides dietary fibers bioflavonoids such as naringin and hesperidin which act as antimicrobials and blood pressure depressants, respectively. A continuous membrane separation process was optimized for the production of bioflavonoids relative to feed flow rate, transmembrane pressure, temperature, and pH. The tangerine peel was blended with 7.5 times water volume and the extract was prefiltered through a prefiltration system. The prefiltered extract was ultrafiltered in a hollow fiber membrane system. The flux and feed flow rate didn't show any apparent correlation, but we could observe a mass-transfer controlled region of over 8 psi. When temperature increased from $9^{\circ}C\;to\;25^{\circ}C$, the flux increased about $10\;liters/m^2/min\;(LMH)$ but between $25^{\circ}C\;and\;33^{\circ}C$, the flux increased only 2 LMH. At every transmembrane pressure, the flux of pH 4.8 was the most highest and the flux at pH 3.0 was lower than that of pH 6.0, 7.0, or 9.0. Therefore, the optimum operating conditions were 49.3 L/hr. 10 psi, $25^{\circ}C$, and pH 4.8. Under the optimum conditions, the flux gradually decreased and finally reached a steady-state after 1 hr 50 min. The amount of dietary fibers in 1.0 g retentate in each separation step was analyzed and bioflavonoids concentration in each permeate was measured. The contents of total dietary fiber in the 170 mesh retentate and soluble dietary fiber in the prefiltered retentate were the highest. Naringin and hesperidin concentration in the permeate were $0.45{\sim}0.65\;mg/g\;and\;5.15{\sim}6.86\;mg/g$ respectively, being $15{\sim}22$ times and $79{\sim}93$ times higher than those in the tangerine peel. Therefore, it can be said that PM 10 hollow fiber membrane separation system may be a very effective method for the recovery of bioflavonoids from tangerine peel.

  • PDF

Deduction and Verification of Optimal Factors for Stent Structure and Mechanical Reaction Using Finite Element Analysis (스텐트의 구조 및 기계적인 반응에 대한 최적인자 도출과 유한요소해석법을 통한 검증)

  • Jeon, Dong-Min;Jung, Won-Gyun;Kim, Han-Ki;Kim, Sang-Ho;Shin, Il-Gyun;Jang, Hong-Seok;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.201-208
    • /
    • 2010
  • Recently, along with technology development of endoscopic equipment, a stent has been developed for the convenience of operation, shortening of recovery times, and reduction of patient's pain. To this end, optimal factors are simulated for the stent structure and mechanical reaction and verified using finite element analysis. In order to compare to present commercialized product such as Zilver (Cook, Bloomington, Indiana, USA) and S.M.A.R.T (Cordis, Bridgewater Towsnhip, New Jersey, USA), mechanical impact factors were determined through Taguchi factor analysis, and flexibility and expandability of all the products including ours were tested using finite element analysis. Also, important factors were sought that fulfill the optimal condition using central composition method of response surface analysis, and optimal design were carried out based on the important factors. From the centra composition method of Response surface analysis, it is found that importat factors for flexibility is stent thickness (T) and unit area (W) and those for expandability is stent thickness (T). In results, important factors for optimum condition are 0.17 mm for stent thickness (T) and $0.09\;mm^2$ for unit area (W). Determined and verified by finite element analysis in out research institute, a stent was manufactured and tested with the results of better flexibility and expandability in optimal condition compared to other products. Recently, As Finite element analysis stent mechanical property assessment for research much proceed. But time and reduce expenses research rarely stent of optimum coditions. In this research, Important factor as mechanical impact factor stent Taguchi factor analysis arrangement to find flexibility with expansibility as Finite element analysis. Also, Using to Center composition method of Response surface method appropriate optimized condition searching for important factor, these considering had design optimized. Production stent time and reduce expenses was able to do the more coincide with optimum conditions. These kind of things as application plan industry of stent development period of time and reduce expenses etc. be of help to many economic development.

The effect of lime on the potassium requirement for low land paddy (석회(石灰)의 시용(施用)이 수도작(水稻作)에서의 가리소요량(加里所要量)에 미치는 영향(影響))

  • Oh, Wang Keon;Lee, Sang Bum;Park, Chan Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.5 no.2
    • /
    • pp.39-42
    • /
    • 1972
  • A field experiment was conducted in a moderately well drained paddy field doveloped in a narrow strip of a valley in order to observe changes of potassium requirement in paddy production when lime is applied. The results obtained are as follows; 1. The response of paddy to potassium (K) and lime (L) is represented mathematically as follow; $Y=462.78+11.582K-0.058L-0.768K^2-0.000015L^2+0.2204KL$. It is considered that the increase of potassium reqirement when slaked lime is applied, is partially due to the increased growth of plant accomplished by the improvement of soil conditions such as the reduction of respiration inhibitors and cationic balance in soil solution. 2. An economic analysis of the use of potassium and slaked lime applying the costs, 80 won per kg of paddy, 19 won per kg of potassium and 4 won per kg of slaked lime to the response function above, showed that the slaked lime without potssium brought a large loss, whereas the use of the lime together with potassium increased the profit remarkably. The profit increased when 10kg of potassium per 10 a is applied in addition to 200kg slaked limn, per 10kg is amounted 4,685 won. 3. A linear relationship between the economic optimum dose of potassium (y) and the amount of slaked lime (x) in paddy production, is obtained as follow; $$y=7.48+\frac{2.77}{200}x$$ It is, however, considered that the amount of potassium to he used might differ according to the soil conditions such as the potassium content and cation exchange capicity of the soil.

  • PDF

Studies on Reaction Parameters for Composting of Paper Mill Sludge in a Small-Scale Reactor and Static Piles (제지슬럿지의 퇴비화를 위한 반응변수 연구)

  • Han, Shin Ho;Chung, Young Ryun;Cho, Cheon Hee;Kang, Moon Hee;Oh, Say Kyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.19-29
    • /
    • 1994
  • A large volume of paper mill sludge(PMS) is produced every day from paper industries after treatments of waste water and it costs too much to dispose of the sludge. Since PMS consists mostly of biodegradable organic matter, cellulose, it is desirable to recycle it by proper treatments such as composting. In this study, experiments were conducted using a small scale reactor(12l) to establish optimum conditions for efficient composting of PMS of which initial pH, C/N ratio, and moisture content were 7.1, 28~30, and 60~65%, respectively. No heavy metals such as mercury, cadmimum, and lead were not detected in the PMS. Various levels of forced aeration, 1 minute aeration per every 30, 60, 120, 240, and 480 minutes were applied and 1 minute aeration per 60 and 120 minutes found to be proper for composting of 8l PMS in this system. Relationship between $CO_2$ production and temperatures was positively correlated with r> 0.82 suggesting that the normal decomposition of PMS by microorganisms occurred. However, under the condition of aeration interval over than 240 minutes, a negative relationship between two parameters was found indicating the occurrence of abnormal(maybe anaerobic) degradation. The amount of added nitrogen also affected composting of PMS resulting in the increase of $CO_2$ production and temperature. Semi-field tests using 100kg PMS in a static pile sysem showed that PMS could be composted efficiently under optimal environmental conditions. The parameters determining efficiency of composting such as C/N ratio, aeration, moisture content, and pH need to be monitored.

  • PDF

Properties of Aspergillar Xylanase and the Effects of Xylanase Supplementation in Wheat-based Diets on Growth Performance and the Blood Biochemical Values in Broilers

  • Wu, Yubo;Lai, Changhua;Qiao, Shiyan;Gong, Limin;Lu, Wenqing;Li, Defa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.66-74
    • /
    • 2005
  • Three experiments were conducted to study the property of xylanase and the effects of xylanase in wheat-based diets on growth performance of broilers, respectively. Experiment 1 was performed in vitro to evaluate the effect of different pH and temperature on xylanase activity, and to evaluate the enzymic stability under different conditions. The results indicated that the optimum temperature and pH for xylanase activity were $50^{\circ}C$ and 4.5, respectively. The activity of enzyme solution was reduced rapidly after the treatment of water bath above $60^{\circ}C$ for 10 min. The enzyme was relatively stable at pH 3.5 to 8.0 and deteriorated when incubated at pH below 3.5. In Experiment 2, a total of 378 d-old male Arbor Acres broilers were randomly distributed to 7 different treatments with 6 replicates (9 birds) in each treatment. The treatments were as follows: (1) corn based diet (CS), (2) wheat based diet (WS), (3) WS+ 0.05% xylanase, (4) WS+0.15% xylanase, (5) WS+0.25% xylanase, (6) WS+0.35% xylanase, (7) WS+0.45% xylanase. The results showed that the body weight and feed/gain ratio of the broilers fed wheat-based diets have been significantly improved (p<0.05) compared to that fed corn-based diet in the first 3 wk. With regard to the wheat-based diets, the xylanase supplementation had a tendency to improve the growth performance in first 3 wk. After 3 wk, no significant difference (p>0.05) was found among all these different treatments. The supplementation of xylanase and the type of diets did not affect the feed intake but increased the concentration of triglyceride in serum. In Experiment 3, a total of 360 d-old male Arbor Acres broilers were assigned to 30 groups with 12 birds in each group randomly. These groups were then randomly distributed to 5 different treatments with 6 replicates within each treatment. The broilers of each treatment were fed one of the diets as follows: (1) Corn based diet, (2) White wheat based diet (WW) (3) White wheat based diet+0.25% xylanase, (4) Red wheat based diet, (5) Red wheat based diet+0.25% xylanase. The results showed that the body weight and feed/gain ratio had been significantly improved (p<0.05) by xylanase supplementation in the first 2 or 3 wk. The effect of xylanase in red wheat diet is a little higher than that used in white wheat diet. From the results of the present experiments, it can be concluded that the supplementation of Aspergillar xylanase can improve the performance of the broilers fed the wheat-based diet.

Effects of Shelf Temperature on the Quality of Red Pepper (Capsicum annuum L.) after Low Temperature Storage (홍고추의 저온저장 후 모의 유통온도가 품질에 미치는 영향)

  • Park, Sung Min;Kang, Won Hee;Lee, Yun Soo;Kim, Il Seop;Jeong, Cheon Soon
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.526-529
    • /
    • 2001
  • The study was conducted to investigate quality changes of red pepper by different shelf temperatures after storage at $7^{\circ}C$ for 30 days. Red pepper fruits produced high volume of $C_2H_4$ and $CO_2$ when alternating temperatures exceeded $10^{\circ}C$. Total sugar contents were not different among all the treatments. In contrast, sucrose content decreased about half at higher shelf temperature conditions than at $7^{\circ}C$. Capsaicinoid content was not influenced by alternating temperature, but ascorbic acid content tended to decrease by high shelf temperature after storage at $7^{\circ}C$. Decay did not occur under $13^{\circ}C$, while it occurred in 22.2% of hits at $15^{\circ}C$ and 68.8% at room temperature, respectively. From this results, it is suggested that the optimum shelf temperature of red pepper after low temperature storage should be under $13^{\circ}C$ and that fruits of red pepper stored at $7^{\circ}C$ for 30 days could be sold within 10 days on the shelf.

  • PDF

Hydrothermal Pretreatment of Ulva pertusa Kjellman Using Microwave Irradiation for Enhanced Enzymatic Hydrolysis (구멍갈파래의 효소 가수분해 증진을 위한 마이크로파 이용 열수 전처리)

  • Kim, Jungmin;Ha, Sung Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.570-575
    • /
    • 2015
  • The green algae have cellulose as a main structural component of their cell wall and the cellulose content in green algae is much higher than other marine algae such as brown algae and red algae. Furthermore, green algae do not contain lignin in their cell wall and store starch as food in their plastids. Thus, it was investigated that the effect of hydrothermal pretreatment process utilizing microwave irradiation for Ulva pertusa Kjellman, a division of green algae, which is expected to be utilized for bioenergy production, on the enzymatic hydrolysis. The hydrothermal temperature have an effect on the pretreatment of Ulva pertusa Kjellman, but the effect of power of microwave irradiation is negligible. The rate of enzymatic hydrolysis was increased as the hydrothermal temperature increased until $140^{\circ}C$. The enzymatic hydrolysis of pretreated Ulva pertusa Kjellman under the optimum pretreatment conditions (50 W of microwave irradiation power and $150^{\circ}C$ of hydrothermal temperature) with cellulase, ${\alpha}$-amylase, and Novozyme 188 having ${\beta}$-glucosidase acitivity resulted in the saccharification of 96 wt% of total carbohydrate in Ulva pertusa Kjellman during 3 hrs, while it took 24 hrs for the enzymatic hydrolysis of untreated Ulva pertusa Kjellman. It confirmed that the hydrothermal pretreatment was effective on Ulva pertusa Kjellman for the enzymatic hydrolysis.

Isolation and Genetic Characterization of Protease-Producing Halophilic Bacteria from Fermenting Anchovy (발효중인 멸치액젓에서 분리한 단백질분해효소 생산 호염성 세균의 유전적 특성)

  • Lee, Jin-Ho
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.167-176
    • /
    • 2012
  • Three protease-producing halophilic bacteria were isolated from fermenting anchovy. Isolated FAM 10, FAM 114, and FAM 115 were found to grow optimally at salt concentrations of 2-4%, 10%, and 6%, respectively, and could grow in salinity of up to 18-22%. The salinity conditions for optimum protease production were 6% in FAM 10 and 10% in FAM 114 and FAM 115. The protease activity of FAM 10 was gradually inhibited by the addition of NaCl up to 10%, and was not evident at 14%, whereas FAM 114 and FAM 115 displayed protease activity at 14% NaCl and could not be measured at 18%. These results demonstrated that the three isolated strains belong to protease-producing, moderately halophilic bacteria. Strain FAM 10, FAM 114, and FAM 115 were identified as Salinivibrio sp., Halobacillus sp., and Halobacillus sp. respectively, based on comparative analyses of the 16S rRNA gene and the 16S-23S intergenic space sequence (IGS), biochemical testing, and Gram staining. Salinivibrio sp. FAM 10 had two 16S rDNAs containing different sequences at position 191 and four IGSs that harbored no tRNA gene and tRNA genes for isoleucine, alanine, glutamate, lysine, and/or valine. Halobacillus sp. FAM 114 and FAM 115 had completely identical 16S rRNA gene sequences and showed 99% identity to the sequences of various Halobacillus strains. The three IGSs found in the genome of both strains displayed 99% sequence identity with Halobacillus aidingensis and Halobacillus sp. JM-Hb, and had $IGS^0$ with no tRNA gene and $IGS^{IA}$ with tRNA genes for isoleucine and alanine.

Solar Power Plant Location Analysis Using GIS and Analytic Hierarchy Process (GIS와 계층분석법을 이용한 태양광 발전소 입지 분석)

  • LEE, Ki-Rim;LEE, Won-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.1-13
    • /
    • 2015
  • The interest in renewable energy which can reduce greenhouse gas emissions has risen in the world including Korea. In Korea, solar energy generation accounts for a major percentage of electricity production using renewable energy and the solar power plants have been increasingly installed in Korea. The problem is, however, that researches on the location selection of solar power plants are unreasonably insufficient although the photovoltaic technology of the domestic solar power plants has been evolving. Thus, advanced solar energy technology could not be fully used. What is more, the indiscriminate installation of the solar power plants seriously damages the nature environment. In this study, conditions of the power plants location are analyzed in consideration of the social, cultural, environmental, economic factors and the optimum location is selected by visualizing and weighing various factors through the analytic hierarchy process. This study shows that the problem caused by the indiscriminate installation of a solar power plant could be prevented by determining the location after considering the influence of several factors. This paper would be helpful not only for the selection of location for solar plant installation in progress, but also for taking follow-up measures on the existing solar power plants placed wrongly.