DOI QR코드

DOI QR Code

Hydrothermal Pretreatment of Ulva pertusa Kjellman Using Microwave Irradiation for Enhanced Enzymatic Hydrolysis

구멍갈파래의 효소 가수분해 증진을 위한 마이크로파 이용 열수 전처리

  • Kim, Jungmin (Department of Biological Engineering, Inha University) ;
  • Ha, Sung Ho (Department of Advanced Materials & Chemical Engineering, Hannam University)
  • 김정민 (인하대학교 생물공학과) ;
  • 하성호 (한남대학교 화공신소재공학과)
  • Received : 2015.04.08
  • Accepted : 2015.04.22
  • Published : 2015.10.01

Abstract

The green algae have cellulose as a main structural component of their cell wall and the cellulose content in green algae is much higher than other marine algae such as brown algae and red algae. Furthermore, green algae do not contain lignin in their cell wall and store starch as food in their plastids. Thus, it was investigated that the effect of hydrothermal pretreatment process utilizing microwave irradiation for Ulva pertusa Kjellman, a division of green algae, which is expected to be utilized for bioenergy production, on the enzymatic hydrolysis. The hydrothermal temperature have an effect on the pretreatment of Ulva pertusa Kjellman, but the effect of power of microwave irradiation is negligible. The rate of enzymatic hydrolysis was increased as the hydrothermal temperature increased until $140^{\circ}C$. The enzymatic hydrolysis of pretreated Ulva pertusa Kjellman under the optimum pretreatment conditions (50 W of microwave irradiation power and $150^{\circ}C$ of hydrothermal temperature) with cellulase, ${\alpha}$-amylase, and Novozyme 188 having ${\beta}$-glucosidase acitivity resulted in the saccharification of 96 wt% of total carbohydrate in Ulva pertusa Kjellman during 3 hrs, while it took 24 hrs for the enzymatic hydrolysis of untreated Ulva pertusa Kjellman. It confirmed that the hydrothermal pretreatment was effective on Ulva pertusa Kjellman for the enzymatic hydrolysis.

녹조류는 cellulose가 세포벽의 주요 구성성분이며 그 양이 다른 해조류에 비해 월등하고, 세포벽에 lignin이 없어 lignin 제거공정을 거치지 않고 cellulase를 사용하여 쉽게 당화시킬 수 있을 뿐만 아니라 저장산물인 전분도 당 성분으로 사용할 수 있다. 이에 바이오에너지 생산을 위한 좋은 바이오매스가 될 것으로 기대되는 녹조류인 구멍갈파래(Ulva pertusa Kjellman)를 사용하여 마이크로웨이브 장치를 통한 열수 전처리 효과가 cellulase를 사용한 가수분해 효율에 미치는 영향을 알아보았다. 열수의 온도에 따른 전처리 효과를 확인하기 위해 $100{\sim}150^{\circ}C$에서 전처리를 수행하였으며, $140{\sim}150^{\circ}C$에서 가장 높은 전처리 효과를 얻었다. 또한 전처리 최적조건인 마이크로웨이브 장치의 출력 50W와 온도$150^{\circ}C$에서 열수 전처리한 구멍갈파래에 포함되어 있는 탄수화물의 효소적 가수분해 효율을 높이기 위해 cellulase 외에 ${\alpha}$-amylase와 ${\beta}$-glucosidase를 함께 사용하여, 효소 혼합의 효과를 확인하였다. 전처리한 구멍갈파래 시료에 cellulase와 ${\alpha}$-amylase 그리고 ${\beta}$-glucosidase 활성을 가지는 Novozyme 188을 사용하여 가수분해하였을 경우 전처리하지 않은 구멍갈파래 시료와 비교하면 초기 가수분해속도가 6배 이상 월등히 높았고, 3시간 만에 구멍갈파래에 포함되어 있는 탄수화물의 96 wt%에 해당할 정도의 환원당이 생성되었으며, 이 양은 전처리하지 않은 구멍갈파래 시료를 24시간동안 효소적 가수분해해야 얻을 수 있는 환원당의 양으로 열수 전처리한 효과가 월등함을 보여주었을 뿐만 아니라 대부분의 탄수화물이 전환되는 최대 당화 효율을 얻을 수 있음을 보여준다.

Keywords

References

  1. Mclaren, J. S., "Crop Biotechnology Provides an Opportunity to Develop a Sustainable Future," Trends Biotechnol., 23(7), 339-342(2005). https://doi.org/10.1016/j.tibtech.2005.04.004
  2. Faaij, A. P. C., "Developments in International Bioenergy Markets and Trade," Biomass and Bioenergy, 32, 657-659(2008). https://doi.org/10.1016/j.biombioe.2008.02.008
  3. Lee, S. U., Jung, K., Park, G. W., Seo, C., Hong, Y. K., Hong, W. H. and Chang, H. N., "Bioprocessing Aspects of Fuels and Chemicals from Biomass," Korean J. Chem. Eng., 29(7), 831-850(2012). https://doi.org/10.1007/s11814-012-0080-6
  4. Hendriks, A. T. W. M. and Zeeman, G., "Pretreatments to Enhance the Digestibility of Lignocellulosic Biomass," Bioresource Technol., 100(1), 10-18(2009). https://doi.org/10.1016/j.biortech.2008.05.027
  5. Ayeni, A. O,, Omoleye, J. A., Mudliar, S., Hymore, F. K. and Pandey, R. A., "Utilization of Lignocellulosic Waste for Ethanol Production: Enzymatic Digestibility and Fermentation of Pretreated Shea Tree Sawdust," Korean J. Chem. Eng., 31(7), 1180-1186(2014). https://doi.org/10.1007/s11814-014-0026-2
  6. Park, J.-I., Woo, H.-C. and Lee, J.-H., "Production of Bio-energy from Marine Algae: Status and Perspectives," Korean Chem. Eng. Res., 46(5), 833-844(2008)
  7. Xiao, M., Shin, H. J. and Dong, Q., "Advances in Cultivation and Processing Techniques for Microalgal Biodiesel: A Review," Korean J. Chem. Eng., 30(12), 2119-2126(2013). https://doi.org/10.1007/s11814-013-0161-1
  8. Kloareg, B., and Quatrano, R. S., "Structure of the Cell Walls of Marine Algae and Ecophysiological Functions of the Matrix Polysaccharides," Oceanogr. Mar. Biol. Annu. Rev., 26, 259-315(1988).
  9. Heo, S. J., Park, E. J., Lee, K. W. and Jeon, Y. J., "Antioxidant Activities of Enzymatic Extracts from Brown Seaweeds," Bioresour. Technol., 96, 1613-1623(2005). https://doi.org/10.1016/j.biortech.2004.07.013
  10. Ito, K. and Hori, K., "Seaweed: Chemical Composition and Potential Food Uses," Food Rev. Int., 5, 101-144(1989). https://doi.org/10.1080/87559128909540845
  11. Liu, C. G. and Wyman, C. E., "Partial Flow of Compressed-Hot Water Through Corn Stover to Enhance Hemicellulose Sugar Recovery and Enzymatic Digestibility of Cellulose," Bioresource Technol., 96, 1978-1985(2005). https://doi.org/10.1016/j.biortech.2005.01.012
  12. Mosier, N., Wyman, C. E., Dale, B. E., Elander, R. T., Lee, Y. Y., Holtzapple, M. and Ladisch, M. R., "Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass," Bioresource Technol., 96, 673-686(2005). https://doi.org/10.1016/j.biortech.2004.06.025
  13. Cayetano, R. D., KIm, T. H. and Um, B.-H., "Bioconversion Strategy in Conversion of Lignocellulosic Biomass upon Various Pretreatment Methods using Sulfuric Acid and Aqueous Ammonia," Korean Chem. Eng. Res., 52(1), 45-51(2014). https://doi.org/10.9713/kcer.2014.52.1.45
  14. Bonn, G., Concin, R. and Bobleter, O., "Hydrothermolysis: A New Process for the Utilization of Biomass," Wood Sci. Technol., 17, 195-202(1983). https://doi.org/10.1007/BF00372318
  15. Sunphorka, S., Prapaiwatcharapan, K., Hinchiranan, N., Kangvansaichol, K., and Kuchonthara, P., "Biocrude Oil Production and Nutrient Recovery from Algae by two-step Hydrothermal Liquefaction Using a Semi-Continuous Reactor," Korean J. Chem. Eng., 32(1), 79-87(2015). https://doi.org/10.1007/s11814-014-0165-5
  16. Kim, J. K., Um, B. H. and Kim, T. H., "Bioethanol Pproduction from Micro-algae, Schizocytrium sp., Using Hydrothermal Treatment and Biological Conversion," Korean J. Chem. Eng., 29(2), 209-214(2012). https://doi.org/10.1007/s11814-011-0169-3
  17. Martin, C. and Thomsen, A. B., "Wet Oxidation Pretreatment of Lignocellulosic Residues of Sugarcane, Rice, Cassava and Peanuts for Ethanol Production," J. Chem. Technol. Biotechnol., 82, 174-181(2007). https://doi.org/10.1002/jctb.1648
  18. Kappe, C. O., Dallinger, D. and Murphree, S. S., Practical Microwave Synthesis for Organic Chemists, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim(2009).
  19. Ha, S. H., Mai, N. L., An, G. and Koo, Y. -M., "Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis," Bioresource Technol., 102, 1214-1219(2011). https://doi.org/10.1016/j.biortech.2010.07.108
  20. Kimberley, A. C. C. Taylor, "A Modification of the Phenol/Sulfuric Acid Assay for Total Carbohydrates Giving More Comparable Absorbances," Applied Biochem. and Bioteehnol., 53, 207-214(1995). https://doi.org/10.1007/BF02783496
  21. Miller, G. L., "Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar," Anal. Chem., 31, 426-428(1958).

Cited by

  1. Effect of microwave irradiation on lipase-catalyzed reactions in ionic liquids vol.30, pp.3, 2017, https://doi.org/10.5806/ast.2017.30.3.138
  2. 미세조류로부터의 에너지 효율적인 Astaxanthin 회수 기술 개발 vol.56, pp.3, 2018, https://doi.org/10.9713/kcer.2018.56.3.376
  3. Ulva lactuca, A Source of Troubles and Potential Riches vol.17, pp.6, 2019, https://doi.org/10.3390/md17060357