• Title/Summary/Keyword: Optimum Production Conditions

Search Result 1,056, Processing Time 0.028 seconds

Production of casein phosphopeptides using Streptococcus faecalis var. liquefaciens cell immobilization (Streptococcus faecalis var. liquefaciens 전세포 고정화법을 이용한 Casein Phosphopeptides 생산)

  • Lee, Ki-Sung;Shin, Jae-Yoon;Jang, Yi-Hyun;Kweon, Dae-Hyuk;Park, Ki-Moon;Jin, Yong-Su
    • KSBB Journal
    • /
    • v.23 no.1
    • /
    • pp.59-64
    • /
    • 2008
  • Optimum conditions for production of casein phosphopeptides (CPP) from sodium casenate by immobilized cell culture of Streptococcus faecalis var. liquefaciens were investigated. Immobilized cells were made by mixing 60% sodium alginate solution with an equal volume of culture broth at the end of exponential phase and subsequently dropping the mixture into $CaCl_{2}$ solution. Optimum conditions for CPP production by the immobilized cells were the same as those ($50^{\circ}C$, pH 7.0, and 10% substrate concentration) by the crude enzyme solution from the supernatant of culture broth. Optimum loading volume of the immobilized cells into a batch reactor was 30% (w/v). Using a continuous reactor loaded by the immobilized cells under the identified optimal conditions, we were able to produce CPP continuously up to 30 days with a maximum CPP conversion efficiency of 20%.

Oligosaccharide Production by Leuconostoc lactis CCK940 Which Has Glucansucrase Activity (Leuconostoc lactis CCK940의 Glucansucrase 활성에 의한 올리고당 생산 최적화)

  • Lee, Sulhee;Park, Young-Seo
    • Food Engineering Progress
    • /
    • v.21 no.4
    • /
    • pp.383-390
    • /
    • 2017
  • Glucansucrase is an enzyme classified as a glycoside hydrolase (GH) 70 family, which catalyzes the synthesis of glucooligosaccharides with a low molecular weight using sucrose as a donor of D-glucopyranose and maltose as a carbohydrate acceptor. In this study, glucansucrase-producing lactic acid bacteria strain was isolated from the fermented foods collected in traditional markets, and the optimum conditions for the oligosaccharide production were investigated. The strain CCK940 isolated from Chinese cabbage kimchi was selected as an oligosaccharide-producing strain due to its high glucansucrase activity, with 918.2 mU/mL, and identified as Leuconostoc lactis. The optimum conditions for the production of oligosaccharides using Leu. lactis CCK940 were to adjust the initial pH to 6.0, add 5% (w/v) sucrose and 10% (w/v) maltose as a donor and acceptor molecules, respectively, and feed 5% (w/v) sucrose at 4 and 8 h of cultivation. When Leu. lactis CCK940 was cultured for 12 h at optimum conditions, at least four oligosaccharides with a polymerization degree of 2-4 were produced.

Fuel properties of biodiesel produced from beef-tallow and corn oil blends based on the variation in the fatty acid methyl ester composition

  • Woo, Duk Gam;Kim, Tae Han
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.941-953
    • /
    • 2019
  • Biodiesels are being explored as a clean energy alternative to regular diesel, which causes pollution. In this study, the optimum conditions for producing biodiesel (BD) by combining beef tallow, an animal waste resource with a high saturated fatty acid content, and corn oil, a vegetable oil with a high unsaturated fatty acid content, were investigated, and the fuel properties were analyzed. Furthermore, Multivariate Analysis of Variance (MANOVA) was used to verify the optimum conditions for producing biodiesel. The influences of control factors, such as the oil blend ratio and methanol to oil molar ratio, on the fatty acid methyl ester and biodiesel production yield were investigated. As a result, the optimum condition for producing blended biodiesel was verified to be tallow to corn oil blend ratio of 7 : 3 (TACO7) and a methanol to oil molar ratio of 14 : 1. Moreover, the interaction between the oil blend ratio and the methanol to oil molar ratio has the most crucial effects on the production of oil blended biodiesel. In conclusion, the analysis results of the fuel properties of TACO7 BD satisfied the BD quality standard, and thus, the viability of BD blended with waste tallow as fuel was verified.

Optimum Operation of a PVDF-type Hollow Fiber Membrane Bioreactor for Continuous Sewage Treatment

  • Shin, Choon-Hwan
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1315-1322
    • /
    • 2010
  • A membrane bioreactor (MBR) was designed using polyvinylidene fluoride(PVDF)-type hollow fiber membrane modules with a treatment capacity of 10 ton/day. A pilot plant was installed in a sewage treatment plant and was operated with an intermittent aeration method which avoids any concentration gradient of suspended solids (SS) in the MBR. For continuous operation, the pilot plant was first tested with influent (mixed liquor suspended solid:MLSS of 1000-2000 mg/L) of aeration tanks in the sewage treatment plant. The MBR was pre-treated with washing water, 10% ethanol solution, 5% NaOCl solution and finally washing water, one after another. To demonstrate the effect of the MBR on sewage treatment, compared with conventional activated sludge processes, we investigated the relationships among permeate amount (LMH), change in operation conditions, influent MLSS level and sludge production. It was found that the optimum aeration rate and suction pressure were $0.3\;m^3$/min and 30~31 cmHg, respectively. Under stable conditions in aeration, suction pressure, influent flow rate and drainage, the SS removal efficiency was more than 99.99% even when the MLSS loading rate changes. Compared with conventional activated sludge processes, the MBR was more effective in cost reduction by 27% based on permeate amount and by 51.5% on sludge production.

Optimization of Two-stage Pretreatment from Soybean Hull for Efficient Glucose Recovery

  • Jung, Ji-Young;Choi, Myung-Suk;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.78-90
    • /
    • 2012
  • Soybean hull is an attractive feedstock for glucose production. To increase the glucose conversion in acid hydrolysis, a pretreatment method combined steam explosion with alkali pretreatment for soybean hull was studied. For first step pretreatment, steam explosion conditions (log Ro 2.45) were optimized to obtain maximum solid recovery and cellulose content. In the second step pretreatment, the conditions for potassium hydroxide pretreatment of steam exploded soybean hull were optimized by using RSM (response surface methodology). The optimum conditions for minimum lignin content were determined to be 0.6% potassium hydroxide concentration, $70^{\circ}C$ reaction temperature and 198 min reaction time. The predicted lignin content was 2.2% at the optimum conditions. Experimental verification of the optimum conditions gave the lignin content in similar value with the estimated value of the model. Finally, glucose conversion of pretreated soybean hull using acid hydrolysis resulted in $97.1{\pm}0.4%$. This research of two-step pretreatment was a promising method for increasing the glucose conversion in the cellulose-to-glucose process.

Studies on the Celluloytic Enzymes Produced by Stropharia rugosoannulata in Synthetic Medium (합성배지에서 Stropharia rugosoannulata가 생산하는 섬유소분해효소에 관한 연구)

  • Yoo, Kwan-Hee;Chang, Hyung-Soo
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.94-99
    • /
    • 1999
  • For the purpose of utilizing cellulose resources by cellulolytic enzymes of Stropharia rugosoannulata, it's cultural conditions for the prodution of cellulolytic enzymes in synthetic media were investigated. The optimum pH for the production of Avicelase and ${\beta}-glucosidase$ was pH 5.0, while that of CMCase was pH 4.0. The optimum temperature for the production of Avicelase, CMCase and ${\beta}-glucosidase$ was $40^{\circ}C$. Among the carbon sources, xylose was good for the production of CMCase and ${\beta}-glucosidase$, but maltose was good for the production of Avicelase. The optimum concentration of the carbon sources for the production of CMCase, Avicelase and ${\beta}-glucosidase$ was 1.0, 0.8 and 1.1%, respectively. As inorganic nitrogen sources, $NH_4Cl$ was good for the production of all the three cellulolytic enzymes. The optimum concentration of $NH_4Cl$ for the production of CMCase was 0.3% while that of Avicelase and ${\beta}-glucosidase$ was 0.4%. As organic nitrogen sources, malt extract was good for the production of all the three cellulolytic enzymes. The optimum concentration of organic nitrogen for the production of ${\beta}-glucosidase$ was 1.3% while that of CMCase and Avicelase was 1.0%. As the mineral sources, $CoCl_2$ good for the was good for the production of all the three cellulolytic enzymes. The optimum concentration of $CoCl_2$ for the production of all the three enzymes was 0.35%.

  • PDF

Calcium Alginate-entrapped Yeast Whole-cell Invertase I Optimum Conditions of Invertase Production (Calcium Alginate에 포괄된 Yeast Invertase의 고정화 효소에 관한 연구 (I. 효소 생산의 최적 조건))

  • Bang, Byeong-Ho;Lee, Sang-Geon;Yang, Cheol-Yeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.2 no.2
    • /
    • pp.8-13
    • /
    • 1989
  • A strain of Saccharomyces cerevisiae BY-366 was found to produce a strong sucrose-hydrolyzing enzyme Using this strain, the optimal culture conditions for the production of invertase were investigated. The results are as follows : 1. For enzyme production, optimal temperature, initial pH and critical concentrations of sucrose and raffinose were 3$0^{\circ}C$, 5.0 and 3.0%, respectively. 2. Enzyme production was reached maximum by organic nitrogen source, 0.3% yeast extract plus 0.5% bactopeptone. 3. It was appeared the presence of 0.1 M Mn2+ and Fe2+ ion was essential factors, on the other hand, 0.1 M Ag+ and Hg2+ ion almost block in yeast growth and enzyme production. 4. Invertase productivity was reached maximum within 3 days on stationary culture with medium-composed of sucrose 3%, bactopeptone 0.5%, yeast extract 0.3%, KEHPO. 0,1%, MgSO4.7H2O 0.05%.

  • PDF

Optimization of Culturing Conditions for Improved Production of Bioactive Metabolites by Pseudonocardia sp. VUK-10

  • Kiranmayi, Mangamuri Usha;Sudhakar, Poda;Sreenivasulu, Kamma;Vijayalakshmi, Muvva
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.174-181
    • /
    • 2011
  • The purpose of the present study was to investigate the influence of cultural and environmental parameters affecting the growth and bioactive metabolite production of the rare strain VUK-10 of actinomycete Pseudonocardia, which exhibits a broad spectrum of in vitro antimicrobial activity against bacteria and fungi. Production of bioactive metabolites by the strain was high the in modified yeast extract-malt extract-dextrose (ISP-2) broth, as compared to other tested media. Glucose (1%) and tryptone (0.25%) were found to be the most suitable carbon and nitrogen sources, respectively, for optimum production of growth and bioactive metabolites. Maximum production of bioactive metabolites was found in the culture medium with initial pH 7 incubated with the strain for four days at $30^{\circ}C$, under shaking conditions. This is the first report on the optimization of bioactive metabolites by Pseudonocardia sp. VUK-10.

Optimum culture conditions for production of extracellular cytosine deaminase by bacellus polymyxa YL 38-3 (Bacillus polymyxa YL38-3의 세포외 cytosine deaminase 생성의 최적 배양 조건)

  • 유대식;김대현;박정문;송형익;정기택
    • Korean Journal of Microbiology
    • /
    • v.26 no.4
    • /
    • pp.362-367
    • /
    • 1988
  • The strain YL 38-3, which was capable of producing extracellular cytosine deaminase, was isolated and taxonomically examined. The isolated strain was identified to be Bacillus polymyxa YL 38-3. The optimal conditions for the enzyme production from Bacillus polymyxa YL 38-3 were investigated. The enzyme production was reached maximum level in the medium containing 0.5% glucose, 0.2% beef extract, 0.5% NaCl and 0.1% $KH_{2}PO_{4}$ (pH 6.0). And the enzyme showed the highest activity when the strain YL 38-3 was cultivated at $35^{\circ}C$ for 24 gours under the initial pH 6.0. By the additions of peptone the extracellular enzyme production was inhibited, meanwhile the intracellular enzyme production was highly stimulated. It was, therefore, deduced that peptone was related to the secretion mechanism of the enzyme from this bacterial cell.

  • PDF