• Title/Summary/Keyword: Optimized model

Search Result 2,464, Processing Time 0.031 seconds

Study of Optimized Simultaneous Extraction Conditions for Active Component of Ginseng Berry using Response Surface Methodology (반응표면분석을 이용한 진생베리의 활성 성분 최적 추출 조건에 관한 연구)

  • Go, Hee Kyoung;Park, Junseong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.2
    • /
    • pp.185-194
    • /
    • 2020
  • This study was conducted to find out the optimal extraction conditions to obtain extracts with a high content of ginsenosides and antioxidant activity using the ginseng berry. After extraction by stirring, ultrasound and microwave method using 70% ethanol and distilled water as solvents, the results of considering the content of ginsenoside Re and Rb1, total polyphenol content, antioxidant activity, and whether it is an environmentally friendly manufacturing method, it was confirmed that the microwave method using distilled water is good method of extraction. The optimization of extraction conditions for microwave method were made by response surface methodology (RSM). Microwave power (50 ~ 200 W, X1), solvent and ginseng berry ratio (5 ~ 20 times, X2) and the extraction time (30 ~ 120 s, X3) were used as independent variables. The model showed a good fit having a determination coefficient of the regression equation of 0.9 or more and a p-value less than 0.05. Estimated conditions for the maximized extraction of ginsenoside contents and total polyphenols were 200 w in microwave power, 20 times in solvent and ginseng berry ratio, and 90 s in extraction time. Predicted values at the optimum conditions were total polyphenols of 6.23 mg GAE/g, ginsenoside Re of 17.69 mg/g, and ginsenoside Rb1 of 16.01 mg/g. In the verification of the actual measurement the obtained values showed 6.33 mg GAE/g, 17.79 mg/g, and 15.59 mg/g, respectively, in good agreement with predicted values.

New trend of dental education: flipped learning for dental classes using Google classroom platform (치의학 교육의 새로운 트렌드 : 구글 클래스룸을 이용한 플립드 러닝(Flipped learning)의 적용 및 평가)

  • Kong, Jun-Hyeong;Moon, Ho-Jin;Park, Jung-Chul
    • Journal of Digital Contents Society
    • /
    • v.17 no.5
    • /
    • pp.317-327
    • /
    • 2016
  • Flipped learning is a new learning technique which can maximize the learning effect by mixing two or more different learning environments including online & offline, and recently introduced system: 'Google classroom' is the optimized internet platform for flipped learning. This study tried to apply flipped learning to regular course 2nd grade dental students(n=70) and evaluated the satisfaction of students. The subjects of periodontology and operative dentistry were chosen to evaluate flipped learning model for regular course 2nd grade dental students(n=70). Each class consisted of six classes, and three times of them were performed in conventional classes and the other three times were in flipped learning method by using Google classroom. Evaluation of satisfaction progressed at the end of class. In this study, application of flipped learning in the dental college classes showed high efficiency in terms of degree of understanding, self-directed learning and motivation. Collectively, it was shown that flipped learning using Google classroom can be a reliable platform in dental classes.

Measurement of Plasma Parameters (Te and Ne) and Reactive Oxygen Species in Nonthermal Bioplasma Operating at Atmospheric Pressure

  • Choi, Eun Ha;Kim, Yong Hee;Kwon, Gi Chung;Choi, Jin Joo;Cho, Guang Sup;Uhm, Han Sup;Kim, Doyoung;Han, Yong Gyu;Suanpoot, Pradoong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.141-141
    • /
    • 2013
  • We have generated the needle-typed nonthermal plasma jet by using an Ar gas flow at atmospheric pressure. Diagnostics of electron temperature anddensity is critical factors in optimization of the atmospheric plasma jet source in accordance with the gas flow rate. We have investigated the electron temperature and density of plasma jet by selecting the four metastable Ar emission lines based on the atmospheric collisional radiative model and radial profile characteristics of current density, respectively. The averaged electron temperature and electron density for this plasma jet are found to be ~1.6 eV and ~$3.2{\times}10^{12}cm^{-3}$, respectively, in this experiment. The densities of OH radical species inside the various bio-solutions are found to be higher by about 4~9 times than those on the surface when the argon bioplasma jet has been bombarded onto the bio-solution surface. The densities of the OH radicalspecies inside the DI water, DMEM, and PBS are measured to be about $4.3{\times}10^{16}cm^{-3}$, $2.2{\times}10^{16}cm^{-3}$, and $2.1{\times}10^{16}cm^{-3}$, respectively, at 2 mm downstream from the surface under optimized Ar gas flow 250 sccm.

  • PDF

A VIEW PLASMA MOTION OF HALL EFFECT THRUSTER WITH PARTICLE SIMULATION (입자모사를 통한 HALL EFFECT THRUSTER의 플라즈마 운동 이해)

  • Lee, J.J.;Jeong, S.I.;Choe, W.;Lee, J.S.;Lim, Y.B.;Seo, M.H.;Kim, H.M.
    • Bulletin of the Korean Space Science Society
    • /
    • 2007.10a
    • /
    • pp.139-143
    • /
    • 2007
  • Electric propulsion has become a cost effective and sound engineering solution for many space applications. The success of SMART-1 and MUSES-C developed by European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) each proved that even small spacecraft could accomplish planetary mission with electric propulsion systems. A small electric propulsion system which is Hall effect thruster like SMART-1 is under development by SaTReC and GDPL (Glow Discharge Plasma Lab.) in KAIST for the next microsatellite, STSAT-3. To achieve optimized propulsion system, it is very necessary to understand plasma motions of Hall effect thruster. In this paper, we try to approach comprehensive plasma model with the particle simulation complementary to Particle In Cell (PIC) simulation. We think these two different approaches will help experimenters to optimize Hall effect thruster performances.

  • PDF

Protection of Infection and Eradication Activity of Culture Product by Pediococcus pentosaceus CBT SL4 Showing Antimicrobial Activity against Helicobacter pylori (Helicobacter pylori에 대한 항균활성을 나타내는 Pediococcus pentosaceus CBT SL4 배양물의 감염방어 및 제균활성)

  • Hong, Un-Pyo;Chung, Myung-June;Kim, Soo-Dong;Oh, Eun-Taex;So, Jae-Seong;Chung, Chung-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.779-783
    • /
    • 2004
  • New food ingredient was developed to eradicate and protect against re-infection of Helicobacter pylori in fermentation broth of lactic acid bacteria (LAB) showing antimicrobial activity against pathogenic microorganisms such as H. pylori and Listeria monocytogenes. LAB strain CBT SL4 was identified as Pediococcus pentosaceus by 16S rDNA sequencing and its culture broth showed antimicrobial activity of 800 AU/mL against H. pylori in optimized fermentation process. Using thin layer concentration system and spray-typed fluid bed drier system, concentrated powder product showing activity of 12,800 AU/g was harvested. Product showed eradication and protection activities against H. pylori infection on feeding test (50 AU/day) using Mongolian gerbil infection model. After 4 weeks therapy of 8,000 AU/day, ${\Delta}13CO_2$ level (DOB30) decreased about 40% in urea breath test on patient with H. pylori infection. Result show concentrated culture product of P. pentosaceus CBT SL4 has eradicating and protecting activities against H. pylori infection and can be used as food-active ingredient for prevention of gastric and duodenum ulcer caused by H. pylori.

Status Report of the NISS and SPHEREx Missions

  • Jeong, Woong-Seob;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Pyo, Jeonghyun;Kim, Il-Joong;Park, Youngsik;Nam, Ukwon;Kim, Minjin;Ko, Jongwan;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.58.2-58.2
    • /
    • 2016
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument optimized to the first small satellite of NEXTSat series. The capability of both imaging and low spectral resolution spectroscopy with the Field of View of $2{\times}2deg.$ in the near-infrared range from 0.9 to $3.8{\mu}m$ is a unique function of the NISS. The major scientific mission is to study the cosmic star formation history in local and distant universe. The Flight Model of the NISS is being developed and tested. After an integration into NEXTSat-1, it will be tested under the space environment. The NISS will be launched in 2017 and it will be operated during 2 years. As an extension of the NISS, SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is the NASA SMEX (SMall EXploration) mission proposed together with KASI (PI Institute: Caltech). It will perform an all-sky near-infrared spectral survey to probe the origin of our Universe; explore the origin and evolution of galaxies, and explore whether planets around other stars could harbor life. The SPHEREx is designed to have wider FoV of $3.5{\times}7deg.$ as well as wider spectral range from 0.7 to $4.8{\mu}m$. After passing the first selection process, SPHEREx is under the Phase-A study. The final selection will be made in the end of 2016. Here, we report the current status of the NISS and SPHEREx missions.

  • PDF

Immuno-chromatographic Analysis for HPV-16 and 18 E7 Proteins as a Biomarker of Cervical Cancer Caused by Human Papillomavirus

  • Kim, Joo-Ho;Cho, Il-Hoon;Seo, Sung-Min;Kim, Ji-Sook;Oh, Kyu-Ha;Kang, Heun-Soo;Kim, In-Gyu;Paek, Se-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.12
    • /
    • pp.2999-3005
    • /
    • 2009
  • Among the more than 120 different types of human papillomavirus (HPV), types 16 and 18 have been known to be high risk agents that cause cervical cancer. We examined, in an immuno-chromatographic analysis, the potential of using the early gene product, E7 protein, as a diagnostic marker of cervical cancer caused by HPV. We developed monoclonal antibodies specific to HPV-16 and 18 E7 proteins that were produced from bacterial cells using gene recombinant technology. For each E7 protein, the optimal antibody pair was selected using the immuno-chromatographic sandwichtype binding system based on the lateral flow through membrane pores. Under these conditions, this rapid testing assay had a detection capability as low as 2 ng/mL of E7 protein. Furthermore, since viral analysis required the host cell to be lysed using chemicals such as detergents, it was possible that the E7 protein was structurally damaged during this process, which would result in a decrease in detection sensitivity. Therefore, we examined the detrimental effects caused by different detergents on the E7 protein using HeLa cells as the host. In these experiments, we found that the damage caused by the detergent, nonylphenylpolyethylene glycol (NP-40), was minimal relative to Triton X-100 commonly used for the cell lysis. Temperature also affected the stability of the E7 protein, and we found that the E7 protein was stabilized at 4$^{\circ}C$ for about 2 h, which was 4 times longer than at room temperature. Finally, a HPV-infected cervical cancer cell line, which was used as a real sample model, was treated using the optimized conditions and the presence of E7 proteins were analyzed by immuno-chromatography. The results of this experiment demonstrated that this rapid test could specifically detect HPV-infected samples.

Multi-DOF Real-time Hybrid Dynamic Test of a Steel Frame Structure (강 뼈대 구조물의 다자유도 실시간 하이브리드 동적 실험)

  • Kim, Sehoon;Na, Okpin;Kim, Sungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.443-453
    • /
    • 2013
  • The hybrid test is one of the most advanced test methods to predict the structural dynamic behavior with the interaction between a physical substructure and a numerical modeling in the hybrid control system. The purpose of this study is to perform the multi-directional dynamic test of a steel frame structure with the real-time hybrid system and to evaluate the validation of the results. In this study, FEAPH, nonlinear finite element analysis program for hybrid only, was developed and the hybrid control system was optimized. The inefficient computational time was improved with a fixed number iteration method and parallel computational techniques used in FEAPH. Furthermore, the previously used data communication method and the interface between a substructure and an analysis program were simplified in the control system. As the results, the total processing time in real-time hybrid test was shortened up to 10 times of actual measured seismic period. In order to verify the accuracy and validation of the hybrid system, the linear and nonlinear dynamic tests with a steel framed structure were carried out so that the trend of displacement responses was almost in accord with the numerical results. However, the maximum displacement responses had somewhat differences due to the analysis errors in material nonlinearities and the occurrence of permanent displacements. Therefore, if the proper material model and numerical algorithms are developed, the real-time hybrid system could be used to evaluate the structural dynamic behavior and would be an effective testing method as a substitute for a shaking table test.

Design Optimization of Dual-Shell and Tube Heat Exchanger for Exhaust Waste Heat Recovery of Gas Heat Pump (GHP 배열회수용 이중 쉘-튜브형 배기가스 열교환기의 설계 최적화)

  • Lee, Jin Woo;Shin, Kwang Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 2015
  • In this paper, we performed the design optimization dual-shell and tube heat exchanger on exhaust waste heat recovery for gas heat pump using CFD and RSM. CFD analysis is useful to design the complex structure such as double shell and tube heat exchanger. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such dual-shell and tube heat exchanger for GHP, the computational time can become overwhelming. CFD is powerful but it takes a lot of time for complex structure. Therefore, the CFD analysis is minimized by the optimization using the RSM method. As a result, the number of baffle and tube are optimized by 6 baffles and 25 tubes for heat transfer and flow friction. And then pressure drop and heat transfer is improved about 12.2%. We confirm the design optimization using CFD and RSM is useful on complex structure of heat exchanger.

Optimization for Concurrent Spare Part with Simulation and Multiple Regression (시뮬레이션과 다중 회귀모형을 이용한 동시조달수리부속 최적화)

  • Kim, Kyung-Rok;Yong, Hwa-Young;Kwon, Ki-Sang
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.79-88
    • /
    • 2012
  • Recently, the study in efficient operation, maintenance, and equipment-design have been growing rapidly in military industry to meet the required missions. Through out these studies, the importance of Concurrent Spare Parts(CSP) are emphasized. The CSP, which is critical to the operation and maintenance to enhance the availability, is offered together when a equipment is delivered. Despite its significance, th responsibility for determining the range and depth of CSP are done from administrative decision rather than engineering analysis. The purpose of the paper is to optimize the number of CSP per item using simulation and multiple regression. First, the result, as the change of operational availability, was gained from changing the number of change in simulation model. Second, mathematical regression was computed from the input and output data, and the number of CSP was optimized by multiple regression and linear programming; the constraint condition is the cost for optimization. The advantage of this study is to respond with the transition of constraint condition quickly. The cost per item is consistently altered in the development state of equipment. The speed of analysis, that simulation method is continuously performed whenever constraint condition is repeatedly altered, would be down. Therefore, this study is suitable for real development environment. In the future, the study based on the above concept improves the accuracy of optimization by the technical progress of multiple regression.