Browse > Article
http://dx.doi.org/10.15230/SCSK.2020.46.2.185

Study of Optimized Simultaneous Extraction Conditions for Active Component of Ginseng Berry using Response Surface Methodology  

Go, Hee Kyoung (Department of Engineering Chemistry, Chungbuk National University, College of Engineering)
Park, Junseong (Department of Engineering Chemistry, Chungbuk National University, College of Engineering)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.46, no.2, 2020 , pp. 185-194 More about this Journal
Abstract
This study was conducted to find out the optimal extraction conditions to obtain extracts with a high content of ginsenosides and antioxidant activity using the ginseng berry. After extraction by stirring, ultrasound and microwave method using 70% ethanol and distilled water as solvents, the results of considering the content of ginsenoside Re and Rb1, total polyphenol content, antioxidant activity, and whether it is an environmentally friendly manufacturing method, it was confirmed that the microwave method using distilled water is good method of extraction. The optimization of extraction conditions for microwave method were made by response surface methodology (RSM). Microwave power (50 ~ 200 W, X1), solvent and ginseng berry ratio (5 ~ 20 times, X2) and the extraction time (30 ~ 120 s, X3) were used as independent variables. The model showed a good fit having a determination coefficient of the regression equation of 0.9 or more and a p-value less than 0.05. Estimated conditions for the maximized extraction of ginsenoside contents and total polyphenols were 200 w in microwave power, 20 times in solvent and ginseng berry ratio, and 90 s in extraction time. Predicted values at the optimum conditions were total polyphenols of 6.23 mg GAE/g, ginsenoside Re of 17.69 mg/g, and ginsenoside Rb1 of 16.01 mg/g. In the verification of the actual measurement the obtained values showed 6.33 mg GAE/g, 17.79 mg/g, and 15.59 mg/g, respectively, in good agreement with predicted values.
Keywords
ginseng berry; ginsenoside; total polyphenol; microwave; RSM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. G. D iagne, G. D . F oster, a nd S . U Khan, Comparison of soxhlet and microwave-assisted extractions for the determination of fenitrothion residues in beans, J. Agric. Food Chem., 50(11), 3204 (2002).   DOI
2 D. H. Park, S. T. Lee, D. Y. Jun, J. Y. Lee, M. H. Woo, K. Y. Kim, M. C. Seo, J. Y. Ko, K. S. Woo, T. W. Jung, D. Y. Kwak, M. H. Nam, and Y. H. Kim, Comparative evaluation of antioxidant activities of ethanol extracts and their solvent fractions obtained from selected miscellaneous cereal grain, Life Sci., 24(1), 26 (2014).   DOI
3 S. Benvenuti, F. Pellati, M. Melegari and D. Bertelli, Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of rubus, ribes and aronia, J. Food Sci, 69(3), 164 (2004).   DOI
4 H. W. Kim, H. S. Shin, S. K. Han and S. E. Oh, Response surface optimization of substrates for thermophilic anaerobic codigestion of sewage sludge and food waste, Journal of the Air & Waste Management Association, 57(3), 309 (2007).   DOI
5 D. H. Shin, S. Heo, C. L. Cheng, T. H. Kim and J. W. Jung, Performance /noise optimization of centrifugal fan using response surface method, The Korean Society of Mechanical Engineering, 41(3), 165 (2017).
6 J. W. Lee, Research direction for value enhancement of korean ginseng and herbal crops, Korean Society For Horticultural Science, 5, 28 (2017).
7 D. H. Jeong, M. Irfan, S. D. Kim, S. Kim, J. H. Oh, C. K. Park, H. K. Kim and M. H. Rhee, Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation, J Ginseng Res., 41(4), 548 (2017)   DOI
8 D. D. Kitts, A. N. Wijewickreme, and C. Hu, Antioxidant properties of a north american ginseng extract, Mol. Cell. Biochem., 203(1-2), 1 (2000).   DOI
9 R. M. Corbit, J. F. Ferreira, S. D. Ebbs, and L. L. Murphy, Simplified extraction of ginsenosides from American ginseng (Panax quinquefolius L.) for highperformance liquid chromatography-ultraviolet analysis, J. Agric. Food Chem., 53(26), 9867 (2005).   DOI
10 T. K. Yun, Panax ginseng-a non-organ-specific cancer preventive?, Lancet Oncol., 2(1), 49 (2001).   DOI
11 Y. H. Jie, S. Cammisuli, and M. Baggiolini, Immunomodulatory effects of Panax ginseng C. A. Meyer in the mouse, Agents and Actions, 15(3-4), 386 (1984).   DOI
12 Y. C. Kim, S. R. Kim, G. J. Markelonis, and T. H. Oh, Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate‐induced neurodegeneration, J. Neurosci. Res., 53(4), 426 (1998).   DOI
13 C. N. Joo, J. D. Koo, D. S. Kim, and S. J. Lee, Biochemical studies of ginseng saponins. XI. The effects of ginseng saponins on alcohol dehydrogenase. Hanguk Saenghwa Hakhoe Chi, 10, 109 (1977).
14 T. Yokozawa, T. Kobayashi, H. Oura, and Y Kawashima, Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats. Chem. Pharm. Bull., 33(2), 869 (1985).   DOI
15 W. Wang, Y. Zhao, E. R. Rayburn, D. L. Hill, H. Wang, and R. Zhang, In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer Chemother. Pharmacol., 59(5), 589 (2007).   DOI
16 S. K. Ko, H. M. Bae, O. S. Cho, B. O. Im, S. H. Chung, and B. Y Lee, Analysis of ginsenoside composition of ginseng berry and seed, Food Sci. Biotechnol., 17(6), 1379 (2008).
17 J. D. Park, Recent studies on the chemical constituents of Korean ginseng (Panax ginseng CA Meyer). Korean J. Ginseng Sci., 20(4), 389 (1996).
18 S. Shibata, O. Tanaka, T. Ando, M. Sado, S. Tsushima, and T. Ohsawa, Chemical studies on oriental plant drugs. XIV. Protopanaxadiol, a genuine sapogenin of ginseng saponins. Chem. Pharm. Bull., 14(6), 595 (1966).   DOI
19 L. Dey, J. T. Xie, A. Wang, J. Wu, S. A. Maleckar and C. Yuan, Antihyperglycemic effects of ginseng: comparison between root and berry, Phytomedicine, 10(6-7), 600 (2003).   DOI
20 D. A. Esquivel‐Hernandez, I. P. Ibarra‐Garza, J. Rodriguez‐Rodriguez, S. P. Cuellar‐Bermudez, M. D. J. Rostro‐Alanis, G. S. Aleman‐Nava, and R. Parra‐Saldivar, Green extraction technologies for high‐value metabolites from algae: a review. Biofuel Bioprod Biorefin, 11(1), 215 (2017).   DOI
21 G. S. Kim, D. Y. Hyun, Y. O. Kim, S. W. Lee, Y. C. Kim, S. E. Lee, Y. D. Son, M. J. Lee, C. B. Park, H. K. Park, S. W. Cha, and K. S. Song, Extraction and preprocessing methods for ginsenosides analysis of Panax ginseng C. A. Mayer, Korean J. Medicinal Crop Sci., 16(6) 446 (2008).
22 M. R. Gonzalez-Centeno, K. Knoerzer, H. Sabarez, S. Simal, C. Rossello, and A. Femenia, Effect of acoustic frequency and power density on the aqueous ultrasonic-assisted extraction of grape pomace (Vitis vinifera L.)-a response surface approach, Ultrason Sonochem, 21(6), 2176 (2014).   DOI
23 X. Pan, G. Niu, and H. Liu, Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves, Chem Eng Process, 42(2), 129 (2003).   DOI