• Title/Summary/Keyword: Optimized Path Routing

Search Result 46, Processing Time 0.026 seconds

Automatic Node Configuration Protocol for Small Sized Mobile Ad-Hoc Networks (소규모 이동 애드혹 네트워크에서의 자동 노드 설정 프로토콜)

  • Lee Hyewon K.;Mun Youngsong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.1
    • /
    • pp.100-109
    • /
    • 2005
  • A Mobile Ad-Hoc Network (MANET) supports a multi-hop wireless network without any prepared base station (BS). The MANET is capable of building a mobile network automatically without any help from DHCP servers for address allocation or routers to forward or route messages. Many routing protocols have been proposed for the MANET, but these specify the most optimized or shortest path from a source to a destination, and they assume that nodes are pre-configured before communication. To make up for this, address allocation algorithms, such as MANETConf [1] and prophet address allocation algorithm [2], have been proposed. Especially, MANETConf proposes address allocation algorithm with duplication address check. In this paper, we present a dynamic node configuration protocol based on 2-tierd hierarchical network architecture for mobile ad-hoc network, modified from [1]. Especially, it reduces the number of broadcast message exchange between nodes when a new node somes into a network, which lessens network overhead, remarkably. This protocol is based on two-tired structure, and it ensures address allocation with simple duplication address defection mechanism.

NEMO-enabled Hybrid Distributed Mobility Management (네트워크 이동성을 지원하는 하이브리드 분산 이동성 관리)

  • Wie, Sunghong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.1030-1040
    • /
    • 2018
  • In Distributed Mobility Management (DMM) protocol, the mobility functions are distributed to network edge closer to mobile users. DMM protocol has some advantages of low-cost traffic delivery, optimized routing path, high scalability. However, it needs many mobile anchors to exchange signaling messages and it results in a high signaling cost. Thus, previous works suggested the hybrid DMM protocol to reduce the high signaling cost for long-live sessions and this paper extends a hybrid scheme to the NEMO environment. The mobile routers are installed at vehicles and can move together with several mobile devices. So we can define the high-mobility property for mobile routers and suggest the hybrid scheme using this property. According to the high-mobility property of mobile routers, we can distribute the mobile anchors or allocate a centralized mobile anchor. In this paper, we mathematically analyze the performance of the proposed NEMO-enabled hybrid DMM protocol and show superior performance.

Content Delivery Network Based on MST Algorithm (MST 알고리즘 기반 콘텐츠 전송 네트워크에 관한 연구)

  • Lee, Hyung-ok;Kang, Mi-young;Nam, Ji-seung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.178-188
    • /
    • 2016
  • The traffic in the wired and wireless networks has increased exponentially because of increase of smart phone and improvement of PC performance. Multimedia services and file transmission such as Facebook, Youtube occupy a large part of the traffic. CDN is a technique that duplicates the contents on a remote web server of content provider to local CDN servers near clients and chooses the optimal CDN server for providing the content to the client in the event of a content request. In this paper, the content request message between CDN servers and the client used the SCRP algorithm utilizing the MST algorithm and the traffic throughput was optimized. The average response time for the content request is reduced by employing HC_LRU cache algorithm that improves the cache hit ratio. The proposed SCRP and HC_LRU algorithm may build a scalable content delivery network system that efficiently utilizes network resources, achieves traffic localization and prevents bottlenecks.

WDM/TDM-Based Channel Allocation Methodology in Optical Network-on-Chip (광학 네트워크-온-칩에서 WDM/TDM 기반 채널 할당 기법)

  • Hong, Yu Min;Lee, Jae Hoon;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.40-48
    • /
    • 2015
  • An optical network-on-chip(ONoC) architecture is emerging as a new paradigm for solving on-chip communication bottleneck. Recent studies on ONoC have been focusing on supporting the parallel transmission and avoiding path collisions using wavelength division multiplexing(WDM). However, since the maximum number of wavelengths, which a single waveguide can accommodate is limited by crosstalk and insertion loss. Therefore previous WDM studies based on incrementing the number of different wavelengths according to the number of nodes would be infeasible due to the implementation complexity. To solve such problems, we combined time division multiplexing(TDM) and wavelength-routed ONoC, along with an optimized channel allocation algorithm, which can minimize the number of extra wavelength channels and latency caused by combining TDM scheme.

Scheduling Algorithm using DAG Leveling in Optical Grid Environment (옵티컬 그리드 환경에서 DAG 계층화를 통한 스케줄링 알고리즘)

  • Yoon, Wan-Oh;Lim, Hyun-Soo;Song, In-Seong;Kim, Ji-Won;Choi, Sang-Bang
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.71-81
    • /
    • 2010
  • In grid system, Task scheduling based on list scheduling models has showed low complexity and high efficiency in fully connected processor set environment. However, earlier schemes did not consider sufficiently the communication cost among tasks and the composition process of lightpath for communication in optical gird environment. In this thesis, we propose LSOG (Leveling Selection in Optical Grid) which sets task priority after forming a hierarchical directed acyclic graph (DAG) that is optimized in optical grid environment. To determine priorities of task assignment in the same level, proposed algorithm executes the task with biggest communication cost between itself and its predecessor. Then, it considers the shortest route for communication between tasks. This process improves communication cost in scheduling process through optimizing link resource usage in optical grid environment. We compared LSOG algorithm with conventional ELSA (Extended List Scheduling Algorithm) and SCP (Scheduled Critical Path) algorithm. We could see the enhancement in overall scheduling performance through increment in CCR value and smoothing network environment.

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.