옵티컬 그리드 환경에서 DAG 계층화를 통한 스케줄링 알고리즘

Scheduling Algorithm using DAG Leveling in Optical Grid Environment

  • 투고 : 2010.04.13
  • 심사 : 2010.07.07
  • 발행 : 2010.07.25

초록

그리드 시스템에서 리스트 스케줄링 기반의 알고리즘을 사용한 태스크 스케줄링은 프로세서의 완전 연결된 환경에서 낮은 시간 복잡도와 높은 효율성을 보여준다. 하지만 기존 알고리즘은 태스크 간의 통신비용 및 옵티컬 그리드 환경에서 통신이 이루어지는 경로인 lightpath의 구성 과정을 충분히 고려하지 않았다. 본 논문에서는 옵티컬 그리드 환경에 최적화 된 방향성 비순환 그래프(Directed Acyclic Graph, DAG)를 계층화하여 태스크의 할당 우선순위를 결정하는 계층화 선택 알고리즘인 LSOG(Leveling Selection in Optical Grid)을 제안한다. 이 알고리즘은 동일한 계층 내 태스크들의 할당 우선순위를 결정할 때 부모 태스크와 통신비용이 가장 큰 태스크를 먼저 수행한 뒤 각각의 네트워크에서 태스크 간의 통신이 이루어지는 가장 짧은 길이의 경로를 고려한다. 이 과정은 옵티컬 그리드 환경에서 링크 리소스 사용을 최적화하여 스케줄링 과정의 통신비용을 개선시킨다. 기존의 알고리즘 중 ELSA (Extended List Scheduling Algorithm)와 SCP (Scheduled Critical Path) 알고리즘을 LSOG 와 비교한 결과 CCR 값의 증가와 네트워크 환경이 원활함에 따라 전체 스케줄링 성능이 향상되는 것을 확인하였다.

In grid system, Task scheduling based on list scheduling models has showed low complexity and high efficiency in fully connected processor set environment. However, earlier schemes did not consider sufficiently the communication cost among tasks and the composition process of lightpath for communication in optical gird environment. In this thesis, we propose LSOG (Leveling Selection in Optical Grid) which sets task priority after forming a hierarchical directed acyclic graph (DAG) that is optimized in optical grid environment. To determine priorities of task assignment in the same level, proposed algorithm executes the task with biggest communication cost between itself and its predecessor. Then, it considers the shortest route for communication between tasks. This process improves communication cost in scheduling process through optimizing link resource usage in optical grid environment. We compared LSOG algorithm with conventional ELSA (Extended List Scheduling Algorithm) and SCP (Scheduled Critical Path) algorithm. We could see the enhancement in overall scheduling performance through increment in CCR value and smoothing network environment.

키워드

참고문헌

  1. I. Foster and C. Kesselman, "The Grid: Blueprint for a Future Computing Infrastructure," 1st edition, Morgan Kaufmann Publishers. Aug. 1998.
  2. A. Sahara and T. Ono and J. Yamawaku and A. Takada and S. Aisawa and M. Koga, "Congestion-Controlled Optical Burst Switching Network With Connection Guarantee: Design and Demonstration," IEEE Journal of Light Technology, vol. 26, no. 14, pp. 2075-2086, Jul 2008.
  3. O. Sinnen and L. Sousa, "List scheduling: extension for contention awareness and evaluation of node priorites for heterogeneous cluster architectures," IEEE Parallel Computing, vol. 30, pp. 81-101, 2004. https://doi.org/10.1016/j.parco.2003.09.002
  4. D. Simeonidou and R. Nejabati and G. Zervas and D. Klonidis and A. Tzanakaki and M. J. Mahony, "Dynamic optical-network architectures and technologies for existing and emerging grid services," Journal of Lightwave Technology, Journal of Lightwave Technology, vol. 23, issue. 10, pp. 3347-3357, Oct 2005. https://doi.org/10.1109/JLT.2005.856254
  5. G. C. Sih and E. A. Lee, "A Compile-Time Scheduling Heuristic for Interconnection - Constrained Heterogeneous Processor Architectures," IEEE transaction on parallel and distributed system, vol. 4, no 2, pp. 175-187, Feb 1993. https://doi.org/10.1109/71.207593
  6. H. Topcuoglu and S. Hariri and M. Wu, "Performance - Effective and Low - complexity Task Scheduling for Heterogeneous Computing," IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 2, pp. 1273-1284, Mar 2002.
  7. I. Ahmad and Y. K. Kwok, and M. Y. Wu, "Amalysis, Evaluation, and Comparison of Algorithms for Scheduling Task Graphs on Parallel Processors," Parallel Architectures, Algorithms, and Networks, vol. 12, pp. 207-213, June 1996.
  8. Y. Wang and Y. Jin and W. Guo and W. Sun and W. Hu, "Joint scheduling for optical grid applications, " Journal of Optical Networking, Vol. 6, Issue 3, pp. 304-318, Mar 2007. https://doi.org/10.1364/JON.6.000304
  9. Z. Sun and W. Guo and Z. Wang and Y. Jin and W. Sun, "Scheduling Algorithm for Workflow-Based Applications in Optical Grid," IEEE Journal of Lightwave Technology, vol. 26, no. 17, pp. 3011-3020, Sep 2008. https://doi.org/10.1109/JLT.2008.923935
  10. H. Zang and J. P. Jue and B. Mukherjee, "A Review of Routing and Wavelength Assignment Approaches for Wavelength-Routed Optical WDM Networks," IEEE Optical Network Magazine, vol. 23, issue 9, Jan 2000.
  11. A. Sahara and T. Ono and J. Yamawaku and A. Takada and S. Aisawa and M. Koga, "Congestion-Controlled Optical Burst Switching Network With Connection Guarantee : Design and Demonstration," IEEE Journal of Light Technology, vol. 26, no. 14, pp. 2075-2086, Jul 2008. https://doi.org/10.1109/JLT.2008.922307
  12. Y. C. Lee and R. Subrata and A. Y. Zomaya, "On the Performance of a Dual-Objective Optimization Model for Workflow Applications on Grid Platforms," IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 20, NO. 9, Sep 2009.
  13. T. H. Cormen and C. E. Lesiserson and R. L. Rivest and C. Stein, "Introduction to algorithms," The MIT Press, second edition, pp. 394-434, 2008.
  14. X. Liang and X. Lin and M. Li, "Adaptive Task Scheduling on Optical Grid," IEEE Asia-Pacific Conference, pp. 486-491, Dec 2006.
  15. D. Cavendish and A. Kolarov and B. Sengupta, "Routing and Wavelength Assignment in WDM Mesh Networks," IEEE Communications Society Globecom, pp. 1016-1023, Aug 2004.