• Title/Summary/Keyword: Optimized Path

Search Result 269, Processing Time 0.03 seconds

A Study of Collaborative and Distributed Multi-agent Path-planning using Reinforcement Learning

  • Kim, Min-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.9-17
    • /
    • 2021
  • In this paper, an autonomous multi-agent path planning using reinforcement learning for monitoring of infrastructures and resources in a computationally distributed system was proposed. Reinforcement-learning-based multi-agent exploratory system in a distributed node enable to evaluate a cumulative reward every action and to provide the optimized knowledge for next available action repeatedly by learning process according to a learning policy. Here, the proposed methods were presented by (a) approach of dynamics-based motion constraints multi-agent path-planning to reduce smaller agent steps toward the given destination(goal), where these agents are able to geographically explore on the environment with initial random-trials versus optimal-trials, (b) approach using agent sub-goal selection to provide more efficient agent exploration(path-planning) to reach the final destination(goal), and (c) approach of reinforcement learning schemes by using the proposed autonomous and asynchronous triggering of agent exploratory phases.

An Improved Hierarchical Routing Protocol for Wireless Hybrid Mesh Network (무선 하이브리드 메쉬 네트워크를 위한 개선된 계층구조 라우팅 프로토콜)

  • Ki, Sang-Youl;Yoon, Won-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.5
    • /
    • pp.9-17
    • /
    • 2010
  • In this paper we propose an improved hierarchical routing protocol for wireless hybrid mesh network. The proposed method efficiently manages network topology and reduces overhead traffic for setting routing path by considering link stability. The simulation results show that the proposed method outperforms the HOLSR (hierarchical optimized link state routing) method in aggregate goodput, packet delivery ratio, and end-to-end delay.

Optimization of Hydroxyl Radical Scavenging Activity of Exopolysaccharides from Inonotus obliquus in Submerged Fermentation Using Response Surface Methodology

  • Chen, Hui;Xu, Xiangqun;Zhu, Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.835-843
    • /
    • 2010
  • The objectives of this study were to investigate the effect of fermentation medium on the hydroxyl radical scavenging activity of exopolysaccharides from Inonotus obliquus by response surface methodology (RSM). A two-level fractional factorial design was used to evaluate the effect of different components of the medium. Corn flour, peptone, and $KH_2PO_4$ were important factors significantly affecting hydroxyl radical scavenging activity. These selected variables were subsequently optimized using path of steepest ascent (descent), a central composite design, and response surface analysis. The optimal medium composition was (% w/v): corn flour 5.30, peptone 0.32, $KH_2PO_4$ 0.26, $MgSO_4$ 0.02, and $CaCl_2$ 0.01. Under the optimal condition, the hydroxyl radical scavenging rate (49.4%) was much higher than that using either basal fermentation medium (10.2%) and single variable optimization of fermentation medium (35.5%). The main monosaccharides components of the RSM optimized polysaccharides are rhamnose, arabinose, xylose, mannose, glucose, and galactose with molar proportion at 1.45%, 3.63%, 2.17%, 15.94%, 50.00%, and 26.81%.

Integrated Task Planning based on Mobility of Mobile Manipulator (M2) Platform

  • Jin, Tae-Seok;Kim, Hyun-Sik;Kim, Jong-Wook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.206-212
    • /
    • 2009
  • This paper presents an optimized integrated task planning and control approach for manipulating a nonholonomic robot by mobile manipulators. Then, we derive a kinematics model and a mobility of the mobile manipulator(M2) platform considering it as the combined system of the manipulator and the mobile robot. to improve task execution efficiency utilizing the redundancy, optimal trajectory of the mobile manipulator(M2) platform are maintained while it is moving to a new task point. A cost function for optimality can be defined as a combination of the square errors of the desired and actual configurations of the mobile robot and of the task robot. In the combination of the two square errors, a newly defined mobility of a mobile robot is utilized as a weighting index. With the aid of the gradient method, the cost function is minimized, so the path trajectory that the M2 platform generates is optimized. The simulation results of the 2 ink planar nonholonomic M2 platform are given to show the effectiveness of the proposed algorithm.

A Minimum Crosstalk Wire Spacing Method by Linear Programming (선형프로그래밍에 의한 최소 혼신 배선간 간격조정방법)

  • 전재한;임종석
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.62-72
    • /
    • 2003
  • This paper deals with a crosstalk minimization method by wire spacing. The suggested method uses linear programming method and consider crosstalk of both horizontal segments and vertical segments. In this paper, we suggest a method which can predict the coupling length between vertical segments in the final routing result using longest path algorithm. By the suggested method, we can make LP problem without integer variable. Therefore, it is much faster to solve the problem. In the case of crosstalk optimization, the suggested method optimized peak crosstalk 11.2%, and 3% total crosstalk more than wire perturbation method. The execution time of the suggested method is as fast as it takes 11 seconds when Deutsch is optimized.

Design and Test Evaluation of a High Temperature and Pressure Valve for Fuel Supply of High-Speed Vehicles (고속비행체 연료공급용 고온고압 밸브 설계 및 시험평가)

  • Kim, Minsang;Hyun, Seokho;Jun, Pilsun;Park, Jeongbae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.945-948
    • /
    • 2017
  • A valve used in a high temperature and pressure condition for high-speed vehicle application was developed for fuel supply and cooling system. For weight reduction purpose, the size outline of valve was optimized based on its performance and operating environment. And the rigidity design was adopted by minimizing uses of sealing parts to prevent leakages. Also, A fluid analysis was performed to derive the optimized internal flow path design in consideration of minimized pressure drop. Finally, the valve performance was verified by installing the valve into the test equipment which enable to simulate endothermic fuel of high temperature in high-speed vehicle.

  • PDF

Aerodynamic design and optimization of a multi-stage axial flow turbine using a one-dimensional method

  • Xinyang Yin;Hanqiong Wang;Jinguang Yang;Yan Liu;Yang Zhao;Jinhu Yang
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.245-256
    • /
    • 2023
  • In order to improve aerodynamic performance of multi-stage axial flow turbines used in aircraft engines, a one-dimensional aerodynamic design and optimization framework is constructed. In the method, flow path is generated by solving mass continuation and energy conservation with loss computed by the Craig & Cox model; Also real gas properties has been taken into consideration. To obtain an optimal result, a multi-objective genetic algorithm is used to optimize the efficiencies and determine values of various design variables; Final design can be selected from obtained Pareto optimal solution sets. A three-stage axial turbine is used to verify the effectiveness of the developed optimization framework, and designs are checked by three-dimensional CFD simulation. Results show that the aerodynamic performance of the optimized turbine has been significantly improved at design point, with the total-to-total efficiency increased by 1.17% and the total-to-static efficiency increased by 1.48%. As for the off-design performance, the optimized one is improved at all working points except those at small mass flow.

Air-Launched Weapon Engagement Zone Development Utilizing SCG (Scaled Conjugate Gradient) Algorithm

  • Hansang JO;Rho Shin MYOUNG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.2
    • /
    • pp.17-23
    • /
    • 2024
  • Various methods have been developed to predict the flight path of an air-launched weapon to intercept a fast-moving target in the air. However, it is also getting more challenging to predict the optimal firing zone and provide it to a pilot in real-time during engagements for advanced weapons having new complicated guidance and thrust control. In this study, a method is proposed to develop an optimized weapon engagement zone by the SCG (Scaled Conjugate Gradient) algorithm to achieve both accurate and fast estimates and provide an optimized launch display to a pilot during combat engagement. SCG algorithm is fully automated, includes no critical user-dependent parameters, and avoids an exhaustive search used repeatedly to determine the appropriate stage and size of machine learning. Compared with real data, this study showed that the development of a machine learning-based weapon aiming algorithm can provide proper output for optimum weapon launch zones that can be used for operational fighters. This study also established a process to develop one of the critical aircraft-weapon integration software, which can be commonly used for aircraft integration of air-launched weapons.

Short-cut Routing Algorithm Using Neighbor Node List in Hierarchical Routing for 6LoWPAN (6LoWPAN의 계층적 라우팅 기법에서 이웃 노드 리스트를 이용한 Short-cut 라우팅 알고리즘)

  • Kang, Moon-Kyoung;Jin, Kyo-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.3
    • /
    • pp.296-305
    • /
    • 2007
  • The HiLow, a hierarchical routing protocol for 6LoWPAN, needs smaller memory allocation and energy than other routing protocols. However, the HiLow has a weak point that does not provide the optimized routing path. In this paper, we propose the algorithm that can find the optimum next hop using neighboring nodes around the source node as well as hierarchical routing path information. We evaluate the performance of proposed algorithm using the computer simulation, and we can acquire results that decreases a number of hop count and transmitted message.

  • PDF

A Minimum Sequence Matching Scheme for Efficient XPath Processing

  • Seo, Dong-Min;Yeo, Myung-Ho;Kim, Myoung-Ho;Yoo, Jae-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.492-506
    • /
    • 2009
  • Index structures that are based on sequence matching for XPath processing such as ViST, PRIX and LCS-TRIM have recently been proposed to reduce the search time of XML documents. However, ViST can cause a lot of unnecessary computation and I/O when processing structural joint queries because its numbering scheme is not optimized. PRIX and LCS-TRIM require much processing time for matching XML data trees and queries. In this paper, we propose a novel index structure that solves the problems of ViST and improves the performance of PRIX and LCS-TRIM. Our index structure provides the minimum sequence matching scheme to efficiently process structural queries. Finally, to verify the superiority of the proposed index structure with the minimum sequence matching scheme, we compare our index structure with ViST, PRIX and LCS-TRIM in terms of query processing of a single path or of a branching path including wild-cards ('*' and '//' ).