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Abstract 
 

Index structures that are based on sequence matching for XPath processing such as ViST, 
PRIX and LCS-TRIM have recently been proposed to reduce the search time of XML 
documents. However, ViST can cause a lot of unnecessary computation and I/O when 
processing structural joint queries because its numbering scheme is not optimized. PRIX and 
LCS-TRIM require much processing time for matching XML data trees and queries. In this 
paper, we propose a novel index structure that solves the problems of ViST and improves the 
performance of PRIX and LCS-TRIM. Our index structure provides the minimum sequence 
matching scheme to efficiently process structural queries. Finally, to verify the superiority of 
the proposed index structure with the minimum sequence matching scheme, we compare our 
index structure with ViST, PRIX and LCS-TRIM in terms of query processing of a single path 
or of a branching path including wild-cards (‘*’ and ‘//’). 
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1. Introduction 

As XML is gaining complete success in being adopted as universal data representation and 
exchange format. However, particularly on the World Wide Web, the problem of querying 
XML documents poses interesting challenges to database researchers. Recently, there have 
been many studies on the structural join methods to efficiently process the XML queries 
involving ancestor-descendant relationships [1][2][3]. The structural join methods can 
efficiently answer simple queries. However, twig queries involving branching structures 
usually have to be disassembled into multiple sub-queries. The results of these sub-queries are 
then combined by expensive join operations to produce final answers. To improve the existing 
structural join methods, Wang et al. have proposed a new method, called ViST, that 
transforms the XML data trees and queries into structure-encoded sequences [4]. ViST 
performs a subsequence matching on the structure-encoded sequences without breaking down 
the twig query into sub-queries to find twig patterns in XML documents. Also, to quickly 
determine the structural relationship between two nodes, each node of the structure-encoded 
sequences is assigned with a pair of numbers (nx, sizex), where nx is the tree traversal order by 
preorder, and where sizex is the total number of descendants of a node, x, in the suffix tree [5]. 
Rao et al. have proposed PRIX that transforms XML data trees and queries into LPS (Labeled 
Prüfer Sequence) and NPS (Numbered Prüfer Sequence) to improve the drawbacks of query 
processing cost and false alarms of the ViST [6]. Tatikonda et al. have proposed LCS-TRIM 
that uses CPS (Consolidated Prüfer Sequence) instead of LPS and NPS of PRIX to reduce the 
sequence matching cost of PRIX [7]. However, ViST has other imminent drawbacks, and 
PRIX and LCS-TRIM require much processing time for structure matching of XML data trees 
and queries. In addition, the LCS-TRIM that’s based on the main memory index is unsuitable 
for searching large XML documents. 

In this paper, we propose an efficient index structure to solve the problems of the ViST, and 
we propose a novel query processing method that’s suitable for the proposed index structure. 
The main contributions of this paper are summarized as follows. We propose a new 
structure-encoded sequence with the Durable numbering scheme [1] to support dynamic data 
insertion and deletion. We propose a minimum sequence matching scheme to speed up the 
subsequence match phase and to return correct answers without false alarms when a query is 
processed. Our approach is directly performed on the disk-based B+Tree and R-Tree, instead 
of relying on specialized data structures that are not well supported by DBMSs. We compare 
our index structure with ViST, PRIX and LCS-TRIM in terms of query processing costs to 
verify the superiority of our proposed index structure for being a minimum sequence matching 
scheme. 

The rest of this paper is organized as follows. Section 2 discusses the background and 
motivations of our work. Section 3 proposes the new query indexing method, and section 4 
presents our experimental results. Finally, section 5 summarizes the conclusion of this paper. 

2. Background and Motivations 

2.1 XML Numbering Schemes 
The structural relationship between two element-nodes can be quickly determined by a region 
encoding scheme, where each element is assigned with a pair of numbers (start, end), based on 
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the element’s position in the data tree [2][3][8], with the following held: for any two distinct 
elements u and v, (1) the region of u is completely  before or after v, or (2) the region of u 
completely contains v or is contained by the region of v. Formally, element u is an ancestor of 
element v iff u.start < v.start and v.end < u.end. Since regions of two distinct elements never 
partially intersect, the formula can be simplified as u.start < v.start < u.end. Usually, region 
codes for element nodes can be effectively generated by a depth-first traversal of the tree and 
sequentially assigning a number at each visit. 

There are other approaches to numbering XML element nodes. One Dietz’s numbering 
scheme uses tree traversal orders [9]. A tree node is assigned a pair of (preorder, postorder) 
tree traversal orders. Element u is an ancestor of element v iff u.preorder < v.preorder and 
v.postorder < u.postorder. The limitation of this approach is the lack of flexibility. That is, the 
preorder and postorder may need to be recomputed for many tree nodes when a new node is 
inserted. The Durable numbering scheme is proposed to more efficiently deal with the 
dynamic updates of XML data. This approach assigns a pair of (order, size) to each node in 
tree [1]. The order is an extended preorder and size is an arbitrary integer that’s larger than the 
total number of the current descendants of each node in a tree to gracefully accommodate 
future insertions. Element u is an ancestor of element v iff u.order < v.order < u.order+u.size. 
 
 

2.2 Problems of ViST 
Wang et al. have proposed a new method called ViST that transforms XML data trees and twig 
queries into structure-encoded sequences [4]. The structure-encoded sequence is a 
two-dimensional sequence of (symbol, prefix) pairs {(a1, p1), (a2, p2), …, (an, pn)} where ai 
represents a node in the XML document tree, and pi represents the path from the root node to a 
node ai. The nodes a1, a2, …, an are in preorder. Also, to quickly determine the structural 
relationship between two nodes, each node of structure-encoded sequences has a pair of 
numbers (nx, sizex), where nx is the tree traversal order by preorder, and sizex is the total number 
of descendants of a node x in the suffix tree. If u and v are labeled (nu, sizeu) and (nv, sizev) 
respectively, then  node u is an ancestor of node v iff nv∈(nu, nu+sizeu]. ViST has a D-Ancestor 
B+Tree, S-Ancestor B+Trees and a DocID B+Tree. The D-Ancestor B+Tree indexes the 
structure-encoded sequences with their (symbol, prefix) as keys. Each S-Ancestor B+Tree 
indexes the nx and sizex values with the same (symbol, prefix). Moreover, a DocID B+Tree, 
using the nx values of suffix tree’s leaf nodes as keys, indexes the document’s IDs involving 
the structure-encoded sequence of each path in a suffix tree. Fig. 1 (a) shows the suffix tree in 
ViST for XML Doc1 and Doc2. Fig. 1 (b) shows ViST on the suffix tree in Fig. 1 (a). 

Suppose a node x, labeled (nx, sizex), is one of the nodes matching a query q1, …, qi-1. To 
match the next element qi in the query, ViST consults the D-Ancestor B+Tree using qi as a key. 
The D-Ancestor B+Tree returns the root of an S-Ancestor B+Tree. ViST then issues a range 
query nx < n ≤ nx+sizex on the S-Ancestor B+Tree to immediately find the descendants of  node 
x. For each descendant, ViST uses the same process to match symbol qi+1, until ViST reaches 
the last element of the query. If a node, y, is one of the nodes that matches the last element in 
the query, then ViST performs a range query (ny, ny+sizey] on the DocID B+Tree to retrieve all 
the documents’ IDs for y or y’s descendants. Fig. 2 shows the query processing phase of ViST 
in Fig. 1. 

ViST performs the subsequence matching of the structure-encoded sequences to optimize 
twig query processing without breaking a twig and it merges the results of sub-queries in XML 
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documents. However, ViST has imminent drawbacks. One of those drawbacks, called 
Unacceptable Accesses, is that determining the structural relationship between two nodes is 
incorrect because the numbering scheme of ViST is associated after all the nodes of a XML 
document tree are indexed on a path of a suffix tree. 
 

        
(a) The suffix tree for Doc1 and Doc2                                   (b) The structure of ViST 

Fig. 1. The ViST for Doc1 and Doc2 
 

Example 1    The child node of (S, P) with n=2 is only (L, PS) with n=3 in Doc1 of Fig. 1. 
However, when the range query (symbol, prefix) of (L, PS) involved in (S, P) is executed, (L, 
PS) with n=6 is also answered as the child of (S, P) according to n(S, P) < n(L, PS) ≤ n(S, P)+size(S, P). 

Another drawback of ViST, called as Unnecessary Accesses, is that ViST accesses 
unnecessary nodes when processing a query. The prefix of the structure-encoded sequence 
represents the path from the root node to its parent node. If ViST utilized the characteristic of 
prefix, then ViST would reduce many I/O costs of determining the structural relationship 
between two nodes. 
 
Example 2    With the PSL of (v1, PSL) in Fig. 1, we can determine that (v1, PSL) has (L, PS) 
as its parent node, and (P, ε) and (S, P) as its ancestor nodes. Therefore, the range queries of (P, 
ε), (S, P) and (L, PS) involving (v1, PSL) are unnecessary, as is shown in Fig. 2. 

Also, the query processing strategy of ViST may result in false alarms. Fig. 3 illustrates 
such a case. The structure-encoded sequence of the twig query Q is a subsequence of Doc1 and 
Doc2. However, the twig pattern, Q, occurs only in Doc1, and the match that’s detected in 
Doc2 is a false alarm. 

2.3 The Problems of PRIX and LCS-TRIM 
Rao et al. have proposed PRIX to improve drawbacks of the query processing cost and the 
false alarms of ViST [6]. PRIX transforms XML data trees and twig queries into LPS and NPS 
as in Fig. 4. In PRIX, each node of a XML document tree and a twig query tree has a unique 
number according to the postorder numbering scheme. LPS and NPS can be then constructed 
according to the node removal method. To construct a sequence from a tree Tn with n nodes 
labeled from 1 to n, the node removal method works as follows. From Tn, delete a leaf with the 
smallest label to form a smaller tree Tn-1. Let a1 denote the label of the node that was the parent 
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of the deleted node. 
 

 
Fig. 2. The query processing of ViST 

 

 
Fig. 3. False Alarms by ViST 

 
Repeat this process on Tn-1 to determine a2 (the parent of the next node to be deleted), and 

continue until only two nodes that are joined by an edge are left. The sequence (a1, a2, a3, …, 
an-2) is called the Prüfer sequence of Tn. If the Prüfer sequence is constructed with numbers 
assigned to nodes, then it is called NPS. If the Prüfer sequence is constructed with labels 
assigned to nodes, then it is called LPS. 

A twig matching of PRIX can be found by performing a subsequence matching on the set of 
LPS and NPS, and by performing a structure matching with gap consistent, frequency 
consistent and matching leaf nodes [6]. The twig matching is faster than that of ViST. 
However, the structure matching of PRIX needs many disk I/O and time. 

Tatikonda et al. have proposed LCS-TRIM to reduce the query processing cost of PRIX 
[10]. LCS-TRIM uses CPS that consists of LS (Label Sequence) and NPS. The NPS of 
LCS-TRIM is similar to that of PRIX. However, PRIX doesn’t take the sequence of the root 
node, but LCS-TRIM takes it. Also, LS takes the labels of the deleted nodes instead of their 
parent node labels. The sequence matching by using LS outperforms that by using LPS 
because LPS additionally performs the matching of leaf nodes. Moreover, LCS-TRIM uses LF 
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(Label Filtering) and DM (Dominant Match) to reduce the number of unnecessary node 
accesses during structure matching. However, when processing queries with wild-cards, LF 
and DM significantly degrade the query performance. Moreover, The LCS-TRIM that’s based 
on main memory index is unsuitable for searching large XML documents. 
 

 
             (a) XML document tree T                                  (b) Twig query tree Q 

Fig. 4. Sequences for a XML document tree and a twig query tree with PRIX and LCS-TRIM 

3. The Proposed Minimum Sequence Matching Scheme 

3.1 The Proposed Index Structure 
Our index structure is based on ViST. One notable difference is that we use the Durable 
numbering scheme [1] to avoid the Unacceptable Accesses of ViST and to more efficiently 
deal with dynamic updates of XML data. Fig. 5 shows our proposed index structure on XML 
Doc1 and Doc2 of Fig. 1. 
 

(a) The suffix tree using the Durable numbering scheme                  (b) Our index structure 

Fig. 5. Our proposed index structure. 
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Another difference is that each path of the suffix tree used in our index structure is 
composed of each of the paths of all XML data trees, whereas each path of the suffix tree used 
in ViST is composed of all the nodes of each XML data tree. The D-Ancestor B+Tree and the 
S-Ancestor B+Trees of our index structure are the same as those of ViST. However, each 
S-Ancestor B+Tree of our index structure indexes the orderx and sizex values assigned by the 
Durable numbering scheme.  Also, we use DocID R-Tree that uses the second smallest nx 
values and the largest nx values of each document as keys. Therefore, our index can find all the 
DocIDs with nx values of all nodes. 

3.2 The Proposed Minimum Sequence Matching Schemes 
If we use the characteristic of prefix as mentioned above, the query performance can be 
significantly improved. We propose achieving the minimum sequence matching by using the 
characteristic of prefix and the bottom-up query processing method. In the case of a single path 
query, as shown in Fig. 6, our index only executes the range query of the last node of the 
structure-encoded sequence of a query. Moreover, as shown in example 3, our query 
processing method is very efficient for wild-cards queries because the number of 
node-accesses by our minimum sequence matching is smaller than that by ViST. 
 

Input : Q : q1, …, qk, a query sequence 

      D-Ancestor B+Tree, index of (symbol, prefix) pairs 

      S-Ancestor B+Tree, index of (order, size) labels 

      DocID R-Tree, mapping between the order values in node labels and document IDs 

Output : all occurrences of Q in the XML data 

 

LinearSearch(Q, k)  /* k is the number of a query sequence’s nodes */ 

 

Function LinearSearch(Q, k) 

 1 : while not found T do 

 2 :    T ← retrieve the S-Ancestor B+Tree that represents qk from the D-Ancestor B+Tree; 

 3 :    N ← retrieve all nodes with range inside (order, order+size) from T; 

 4 :    for each node c ∈ N do 

 5 :        Perform a query with key(order) on the DocID R-tree to output all document 

 6 :        IDs in that key; 

 7 :    end 

 8 : end 
 

Fig. 6. The minimum sequence matching of a single path query 
 
Example 3 Consider a query “/P/*/L/v2”. The structure-encoded sequence of this query is (P, 
ε)(L, P*)(v2, P*L) and the last node sequence of this query is (v2, P*L). Therefore, as shown in 
Fig. 7 (a), our method performs only a range query to match (v2, P*L) in the D-Ancestor 
B+Tree of Fig. 5. We find (v2, PBL) and (v2, PSL) as the result of the range query. Then, to 
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find documents involving (v2, PBL) and (v2, PSL), range queries are executed in each 
S-Ancestor B+Tree of (v2, PBL) and (v2, PSL). However, the query processing method of 
ViST has many disk I/O and time because of the top-down query processing method, as is 
shown in Fig. 7 (b). 
 

 
(a) Query processing by proposed minimum sequence matching 

 

 
(b) Query processing by ViST 

Fig. 7. Single path query processing phases of our method and ViST 
 

If a twig query is processed by our minimum sequence matching for a single path query, 
then false alarms occur because the structural relationship among multiple sub-queries 
disassembled from a twig query is not determined. Therefore, we also propose the efficient 
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minimum sequence matching for a twig query; it only executes the range queries about the leaf 
nodes and branch nodes of a twig query tree, as is shown in example 4. 
 
Example 4 Consider a query “/P/S[L/v1]/L/v2”. The structure-encoded sequence of this query 
is (P, ε)(S, P)(L, PS)(v1, PSL)(L, PS)(v2, PSL). The sequence nodes for the leaf nodes of this 
twig query tree are (v1, PSL) and (v2, PSL). And the sequence node for the branch node is (S, 
P), as is shown in Fig. 8 (a). Fig. 8 (b) shows the twig query processing phases by the 
proposed minimum sequence matching of a twig query. First, our method performs range 
queries to match (v1, PSL), (v2, PSL) and (S, P) in the D-Ancestor B+Tree of Fig. 5. We find 
the S-Ancestor B+Trees of (v1, PSL), (v2, PSL) and (S, P) as the results of the above range 
queries. Then, by range queries of the above S-Ancestor B+Trees, we find (30, 0) as the 
numbering of (v1, PSL), (41, 0) as the numbering of (v2, PSL), and (10, 20) and (31, 10) as the 
numbering of (S, P). Finally, to determine the structural relationship among above numbering 
values, we find the numbering values of branch node sequence involving the numbering 
values of each leaf node sequence by equation (1). For example, we compute {(30, 30+0]∈10 
& (41, 41+0]∈10} and {(30, 30+0]∈31 & (41, 41+0]∈31}. However, since Doc1 and Doc2 
do not have the sequences of this twig query, the result of this twig query does not exist. As a 
result, our minimum sequence matching has no false alarms. 
 

(order(v1, PSL), order(v1, PSL)+size(v1, PSL)]∈order(S, P) 

&                                                                                        (1) 
(order(v2, PSL), order(v2, PSL)+size(v2, PSL)]∈order(S, P) 

 

 
Fig. 8. The twig query processing phases of our method. 

4. Performance Evaluation 

4.1 Experimental Environment 
To determine the effectiveness of our minimum sequence matching scheme, we compare the 
performance of our index structure with that of ViST, PRIX and LCS-TRIM. We implemented 
our XML indexing in C++. The implementation uses the B+Tree API provided by GiST [11]. 
Also, we get the ViST algorithm, the PRIX algorithm and LCS-TRIM algorithm from [12], 
[13] and [10]. We run our experiments on 3.0GHz Pentium IV processor with 1GB RAM 
running on Linux kernel 2.6. The code is compiled using the GNU g++ compiler, version 4.0.2. 
A page size of 8KB is used, and 8-byte number ranges are used to label the nodes. However, 
the LCS-TRIM used the buffer size of 200MB because the index is based on main memory. 
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We provided a comparison with LCS-TRIM to verify that the structure matching of 
LCS-TRIM can cost more. We experiment with the datasets that are obtained from the 
University of Washington’s XML repository [14]. We choose these three datasets since each 
has a different characteristic, as is shown in Table 1. The document tree in the DBLP dataset 
has good similarity in structure and is shallow. The document tree in the SWISSPROT dataset 
is bushy and shallow. The document tree in the TREEBANK dataset is skinny and has deep 
recursions of element names. Table 1 provides additional information such as the maximum 
depth, the number of elements and so on for the datasets.  
 

Table 1. The datasets used in our experiments 

Data Name DBLP SWISSPROT TREEBANK 
Size in MB 134 115 86 

# of Elements 3332130 2977031 2437666 
# of Attributes 404276 2189859 1 

Max-depth 6 5 36 
# of Sequences 328858 50000 56385 

 
The XPath queries listed in Table 2 are tested in our experiments. These queries have 

different characteristics in terms of selectivity, presence of values and twig structure. Since the 
values are encrypted, we choose queries without values (character data) for the TREEBANK 
dataset 
 

Table 2. The XPath queries used in our experiments 

No. Query Dataset 
Q1 //article/author=“E. F. Codd” DBLP 
Q2 //phdthesis[/year][/number] DBLP 
Q3 //inproceedings[/author=“Jim Gray”][/year=“1990”] DBLP 
Q4 //Ref/Author=“Moss J” SWISSPROT 
Q5 //Entry[/Org=“Piroplasmida”][/Ref/Author=“Kemp D.J”] SWISSPROT 
Q6 //Entry[/PFAM[@prim-id=“PF00304”][//SIGNAL//Descr] SWISSPROT 
Q7 //S//NP/SYM TREEBANK 
Q8 //NP[/RBR-OR-JJR]/PP TREEBANK 
Q9 //NP/PP/NP[/NNS-OR-NN][/NN] TREEBANK 

4.2 Experimental Results 
For evaluating various experiments, our index has two types. One, called C-index, indexes the 
structure-encoded sequences and the numbering values of character data on a D-Ancestor 
B+Tree and S-Ancestor B+Trees like ViST. The second, called NC-index, does not index the 
structure-encoded sequences and the numbering values of character data on a D-Ancestor 
B+Tree and S-Ancestor B+Trees like PRIX. Therefore, NC-index stores the values of 
character data in a database and each leaf node with character data in S-Ancestor B+Trees 
points each tuple with its value in a database. If NC-index has a query with character data, then 
the NC-index first executes the minimum sequence matching of this query without character 
data, and the NC-index then executes the matching character data between the leaf nodes of 
this query and the tuples of the database. 

Fig. 9 shows the performance results of the total time elapsed and physical I/O (pages read 
from disk) to process queries Q1, Q2 and Q3 of the DBLP dataset. The physical I/O of 
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LCS-TRIM represents the size of the used main memory. Q1 is a single path query with two 
element nodes and one character data node. ViST and PRIX execute range queries on all nodes 
of the structure-encoded sequence for Q1. LCS-TRIM requires scanning all of the main 
memory to construct R-matrix for processing queries [10]. However, C-index executes the 
range query of the leaf node of the structure-encoded sequence of Q1. Therefore, our index is 
better than the other indexes. C-index is better than NC-index because NC-index additionally 
requires the matching character data between the leaf node of Q1 and the tuple of the database. 
Q2 and Q3 are twig queries with three element nodes and two branches, and with three element 
nodes, two character data nodes and two branches, respectively. Processing a single path query 
is better than processing a twig query because processing a twig query additionally requires 
determining the structural relationship between multiple sub-queries disassembled from a twig 
query. The performance results of NC-index and C-index to process Q2 are the same because 
Q2 has no character data. Also, the performance results of Q2 are better than those of Q1 
because ‘year’ element and ‘number’ element as a child of ‘phdthesis’ element are more than 
‘author’ element as a child of ‘article’ element in the DBLP dataset. The performance results 
of NC-index to process Q3 are more faulty than those of the others because ‘author’ element 
and ‘year’ element as a child of ‘inproceedings’ element are plentiful in the DBLP dataset and 
they additionally require the matching character data to process ‘Jim Gray’ element and 
‘1990’ element. LCS-TRIM is better than our index because the structure matching of 
LCS-TRIM is executed in the main memory. 
 

 
(a) Total time elapsed for Q1, Q2 and Q3 

 
 NC-Index C-Index PRIX ViST LCS-TRIM 

Q1 8 pages 1 pages 23 pages 2,280 pages 23.61 MB 
Q2 2 pages 2 pages 8 pages 17 pages 23.61 MB 
Q3 39 pages 7 pages 185 pages 3,543 pages 23.61 MB 

(b) Total physical I/O of Q1, Q2 and Q3 

Fig. 9. The performance results of Q1, Q2 and Q3. 
 

Fig. 10 shows the performance results of processing queries Q4, Q5 and Q6 of the 
SWISSPROT dataset. Q4 is the same single path query as Q1. Processing Q4 is better than 
processing Q1 because the elements that are related to Q1 are more than those related to Q4 of 
the SWISSPROT dataset. The performance results of C-index to process Q1 and Q4 are the 
same because the number of character data of Q1 and Q4 is same. Q5 is the same twig query as 
Q3. Also, as shown in the performance results to process Q1 and Q4, processing  Q5 is better 
than the processing Q3 because the elements that are related to Q3 are more than those related 
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to Q5. Q6 is a twig query with an attribute node and a wild-card ‘//’. The performance results to 
process Q6 are more erroneous than those to process Q4 and Q5 because of the many range 
queries to process the wild-card. But NC-index to process Q6 is better than that to process Q5 
because the ‘@prim_id’ attribute and ‘Descr’ element that are related to Q6 are more than 
‘Org’ and ‘Author’ elements that are related to Q5 of the SWISSPROT dataset. If a query has 
wild-cards, then LF and DM of LCS-TRIM don’t construct the small R-matrix because almost 
all the nodes of main memory are inserted into R-matrix to find the ancestor nodes of the nodes 
that are involved in the query. Therefore, the cost of structure matching is increased. 
 

 
(a) Total time elapsed for Q4, Q5 and Q6 

 
 NC-Index C-Index PRIX ViST LCS-TRIM 

Q4 2 pages 1 pages 9 pages 1,657 pages 23.14 MB 
Q5 18 pages 2 pages 49 pages 1,885 pages 23.14 MB 
Q6 7 pages 4 pages 83 pages 4,367 pages 23.14 MB 

(b) Total physical I/O of Q4, Q5 and Q6 

Fig. 10. The performance results of Q4, Q5 and Q6. 
 

Fig. 11 shows the performance results of processing queries Q7, Q8 and Q9 of the 
TREEBANK dataset. Q7 is a single path query with two wild-cards ‘//’. To process Q7, ViST 
performs the range queries (S, //), (NP, //S//) and (SYM, //S//NP). The results of these range 
queries cause many other range queries to produce final answers. PRIX performs the range 
queries ‘S’, ‘NP’ and ‘SYM’. Also, PRIX performs the subsequence matching and refinement 
phases on the set of LPS and NPS of the results of these range queries. Our index only 
performs the range query (SYM, //S//NP). Therefore, our index clearly outperforms other 
indexes. The TREEBANK dataset has no character data because the character data are 
encrypted. The performance results of NC-index and C-Index to process each query are the 
same. Q8 and Q9 are the twig queries with a wild-card ‘//’. As shown in Fig. 11, the 
performance results of our index to process a single query are better than those to process a 
twig query because our index additionally requires the range queries of vertex nodes to process 
a twig query. However, the performance results of PRIX to process Q8 are better than those to 
process Q7 because the number of LPS and NPS of processing Q7 are more than those of 
processing Q8. Also, in LCS-TRIM, if the depth of the document tree is high and a query has 
wild-cards, then the size of R-matrix is much increased. 

Fig. 12 shows the performance results of false alarms. PRIX performs a series of refinement 
phases with gap consistent and frequency consistent to avoid the false alarms of ViST. 
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LCS-TRIM performs structure matching by LF and DM. Our index performs the minimum 
sequence matching according to the Durable numbering scheme. As shown in Fig. 12, PRIX, 
LCS-TRIM and our index have no false alarms. However, ViST has many false alarms. For 
example, the DBLP dataset has 72 ‘phdthesis’ elements, 72 ‘year’ elements as a child of 
‘number’ and 3 elements as a child of ‘phdthesis’. Also, there are 3 ‘phdthesis’ elements with 
‘year’ element and ‘number’ element as a child. However, ViST has 4602 ‘phdthesis’ 
elements as the result of Q2 because if a node, y, is a child or a descendant of a node x on ViST, 
then ViST treats node y as a child or a descendant of node x in spite of the fact that node y is not 
a child or a descendant of node x in a XML document. 
 

 
(a) Total time elapsed for Q7, Q8 and Q9 

 
 NC-Index C-Index PRIX ViST LCS-TRIM 

Q7 3 pages 3 pages 46 pages 40,827 pages 11.73 MB 
Q8 4 pages 4 pages 35 pages 94,505 pages 11.73 MB 
Q9 4 pages 4 pages 55 pages 121,928 pages 11.73 MB 

(b) Total physical I/O of Q7, Q8 and Q9 

Fig. 11. The performance results of Q7, Q8 and Q9. 
 
 

 
Fig. 12. The performance results of the false alarms 
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5. Conclusion 
In this paper, we have presented an efficient paradigm for the XPath query processing. We 
have proposed a novel index structure that uses the Durable numbering scheme and the 
structure-encoded sequences of the XML tree for indexing XML data. Then, to quickly 
process XPath queries, we have proposed the minimum sequence matching scheme using the 
characteristic of the prefix. We have also provided empirical performance analysis to 
demonstrate the efficient processing of XML queries when using our index structure. In the 
future, we will study how to efficiently process the delimiters of the prefix schemes, to 
decrease the label size and to maintain low-label update. 
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