
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 5, October 2009 492
Copyright ⓒ 2009 KSII

A preliminary version of this paper appeared in ICCS 2007, LNCS 4489, May 27-30, Beijing, China. This version
includes a concrete analysis and supporting experimental results with recent sequence schemes. This work was
supported by the Ministry of Education, Science and Technology Grant funded by the Korean Government (The
Regional Research Universities Program/Chungbuk BIT Research-Oriented University Consortium) and by the
Brain Korea 21 Project, the School of Information Technology, KAIST in 2009.

DOI: 10.3837/tiis.2009.05.005

A Minimum Sequence Matching Scheme for
Efficient XPath Processing

Dong-min Seo1, Myung-Ho Yeo2, Myoung-Ho Kim1 and Jae-Soo Yoo2

1 Department of Computer Science, Korean Advanced Institute of Science and Technology, Daejen, Korea
[e-mail: {dmseo, mykim}@dbserver.kaist.ac.kr]

2 Department of Computer and Communication Engineering, Chungbuk National University, Cheongju, Korea
[e-mail: {mhyeo, yjs}@chungbuk.ac.kr]

*Corresponding author: Jae-Soo Yoo

Received August 15, 2009; revised September 22, 2009; accepted September 28, 2009;
 published October 30, 2009

Abstract

Index structures that are based on sequence matching for XPath processing such as ViST,
PRIX and LCS-TRIM have recently been proposed to reduce the search time of XML
documents. However, ViST can cause a lot of unnecessary computation and I/O when
processing structural joint queries because its numbering scheme is not optimized. PRIX and
LCS-TRIM require much processing time for matching XML data trees and queries. In this
paper, we propose a novel index structure that solves the problems of ViST and improves the
performance of PRIX and LCS-TRIM. Our index structure provides the minimum sequence
matching scheme to efficiently process structural queries. Finally, to verify the superiority of
the proposed index structure with the minimum sequence matching scheme, we compare our
index structure with ViST, PRIX and LCS-TRIM in terms of query processing of a single path
or of a branching path including wild-cards (‘*’ and ‘//’).

Keywords: XML, XPath, query processing, sequence matching, index structure

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 5, October 2009 493

1. Introduction

As XML is gaining complete success in being adopted as universal data representation and
exchange format. However, particularly on the World Wide Web, the problem of querying
XML documents poses interesting challenges to database researchers. Recently, there have
been many studies on the structural join methods to efficiently process the XML queries
involving ancestor-descendant relationships [1][2][3]. The structural join methods can
efficiently answer simple queries. However, twig queries involving branching structures
usually have to be disassembled into multiple sub-queries. The results of these sub-queries are
then combined by expensive join operations to produce final answers. To improve the existing
structural join methods, Wang et al. have proposed a new method, called ViST, that
transforms the XML data trees and queries into structure-encoded sequences [4]. ViST
performs a subsequence matching on the structure-encoded sequences without breaking down
the twig query into sub-queries to find twig patterns in XML documents. Also, to quickly
determine the structural relationship between two nodes, each node of the structure-encoded
sequences is assigned with a pair of numbers (nx, sizex), where nx is the tree traversal order by
preorder, and where sizex is the total number of descendants of a node, x, in the suffix tree [5].
Rao et al. have proposed PRIX that transforms XML data trees and queries into LPS (Labeled
Prüfer Sequence) and NPS (Numbered Prüfer Sequence) to improve the drawbacks of query
processing cost and false alarms of the ViST [6]. Tatikonda et al. have proposed LCS-TRIM
that uses CPS (Consolidated Prüfer Sequence) instead of LPS and NPS of PRIX to reduce the
sequence matching cost of PRIX [7]. However, ViST has other imminent drawbacks, and
PRIX and LCS-TRIM require much processing time for structure matching of XML data trees
and queries. In addition, the LCS-TRIM that’s based on the main memory index is unsuitable
for searching large XML documents.

In this paper, we propose an efficient index structure to solve the problems of the ViST, and
we propose a novel query processing method that’s suitable for the proposed index structure.
The main contributions of this paper are summarized as follows. We propose a new
structure-encoded sequence with the Durable numbering scheme [1] to support dynamic data
insertion and deletion. We propose a minimum sequence matching scheme to speed up the
subsequence match phase and to return correct answers without false alarms when a query is
processed. Our approach is directly performed on the disk-based B+Tree and R-Tree, instead
of relying on specialized data structures that are not well supported by DBMSs. We compare
our index structure with ViST, PRIX and LCS-TRIM in terms of query processing costs to
verify the superiority of our proposed index structure for being a minimum sequence matching
scheme.

The rest of this paper is organized as follows. Section 2 discusses the background and
motivations of our work. Section 3 proposes the new query indexing method, and section 4
presents our experimental results. Finally, section 5 summarizes the conclusion of this paper.

2. Background and Motivations

2.1 XML Numbering Schemes
The structural relationship between two element-nodes can be quickly determined by a region
encoding scheme, where each element is assigned with a pair of numbers (start, end), based on

494 Seo et al.: A Minimum Sequence Matching Scheme for Efficient XPath Processing

the element’s position in the data tree [2][3][8], with the following held: for any two distinct
elements u and v, (1) the region of u is completely before or after v, or (2) the region of u
completely contains v or is contained by the region of v. Formally, element u is an ancestor of
element v iff u.start < v.start and v.end < u.end. Since regions of two distinct elements never
partially intersect, the formula can be simplified as u.start < v.start < u.end. Usually, region
codes for element nodes can be effectively generated by a depth-first traversal of the tree and
sequentially assigning a number at each visit.

There are other approaches to numbering XML element nodes. One Dietz’s numbering
scheme uses tree traversal orders [9]. A tree node is assigned a pair of (preorder, postorder)
tree traversal orders. Element u is an ancestor of element v iff u.preorder < v.preorder and
v.postorder < u.postorder. The limitation of this approach is the lack of flexibility. That is, the
preorder and postorder may need to be recomputed for many tree nodes when a new node is
inserted. The Durable numbering scheme is proposed to more efficiently deal with the
dynamic updates of XML data. This approach assigns a pair of (order, size) to each node in
tree [1]. The order is an extended preorder and size is an arbitrary integer that’s larger than the
total number of the current descendants of each node in a tree to gracefully accommodate
future insertions. Element u is an ancestor of element v iff u.order < v.order < u.order+u.size.

2.2 Problems of ViST
Wang et al. have proposed a new method called ViST that transforms XML data trees and twig
queries into structure-encoded sequences [4]. The structure-encoded sequence is a
two-dimensional sequence of (symbol, prefix) pairs {(a1, p1), (a2, p2), …, (an, pn)} where ai
represents a node in the XML document tree, and pi represents the path from the root node to a
node ai. The nodes a1, a2, …, an are in preorder. Also, to quickly determine the structural
relationship between two nodes, each node of structure-encoded sequences has a pair of
numbers (nx, sizex), where nx is the tree traversal order by preorder, and sizex is the total number
of descendants of a node x in the suffix tree. If u and v are labeled (nu, sizeu) and (nv, sizev)
respectively, then node u is an ancestor of node v iff nv∈(nu, nu+sizeu]. ViST has a D-Ancestor
B+Tree, S-Ancestor B+Trees and a DocID B+Tree. The D-Ancestor B+Tree indexes the
structure-encoded sequences with their (symbol, prefix) as keys. Each S-Ancestor B+Tree
indexes the nx and sizex values with the same (symbol, prefix). Moreover, a DocID B+Tree,
using the nx values of suffix tree’s leaf nodes as keys, indexes the document’s IDs involving
the structure-encoded sequence of each path in a suffix tree. Fig. 1 (a) shows the suffix tree in
ViST for XML Doc1 and Doc2. Fig. 1 (b) shows ViST on the suffix tree in Fig. 1 (a).

Suppose a node x, labeled (nx, sizex), is one of the nodes matching a query q1, …, qi-1. To
match the next element qi in the query, ViST consults the D-Ancestor B+Tree using qi as a key.
The D-Ancestor B+Tree returns the root of an S-Ancestor B+Tree. ViST then issues a range
query nx < n ≤ nx+sizex on the S-Ancestor B+Tree to immediately find the descendants of node
x. For each descendant, ViST uses the same process to match symbol qi+1, until ViST reaches
the last element of the query. If a node, y, is one of the nodes that matches the last element in
the query, then ViST performs a range query (ny, ny+sizey] on the DocID B+Tree to retrieve all
the documents’ IDs for y or y’s descendants. Fig. 2 shows the query processing phase of ViST
in Fig. 1.

ViST performs the subsequence matching of the structure-encoded sequences to optimize
twig query processing without breaking a twig and it merges the results of sub-queries in XML

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 5, October 2009 495

documents. However, ViST has imminent drawbacks. One of those drawbacks, called
Unacceptable Accesses, is that determining the structural relationship between two nodes is
incorrect because the numbering scheme of ViST is associated after all the nodes of a XML
document tree are indexed on a path of a suffix tree.

(a) The suffix tree for Doc1 and Doc2 (b) The structure of ViST

Fig. 1. The ViST for Doc1 and Doc2

Example 1 The child node of (S, P) with n=2 is only (L, PS) with n=3 in Doc1 of Fig. 1.
However, when the range query (symbol, prefix) of (L, PS) involved in (S, P) is executed, (L,
PS) with n=6 is also answered as the child of (S, P) according to n(S, P) < n(L, PS) ≤ n(S, P)+size(S, P).

Another drawback of ViST, called as Unnecessary Accesses, is that ViST accesses
unnecessary nodes when processing a query. The prefix of the structure-encoded sequence
represents the path from the root node to its parent node. If ViST utilized the characteristic of
prefix, then ViST would reduce many I/O costs of determining the structural relationship
between two nodes.

Example 2 With the PSL of (v1, PSL) in Fig. 1, we can determine that (v1, PSL) has (L, PS)
as its parent node, and (P, ε) and (S, P) as its ancestor nodes. Therefore, the range queries of (P,
ε), (S, P) and (L, PS) involving (v1, PSL) are unnecessary, as is shown in Fig. 2.

Also, the query processing strategy of ViST may result in false alarms. Fig. 3 illustrates
such a case. The structure-encoded sequence of the twig query Q is a subsequence of Doc1 and
Doc2. However, the twig pattern, Q, occurs only in Doc1, and the match that’s detected in
Doc2 is a false alarm.

2.3 The Problems of PRIX and LCS-TRIM
Rao et al. have proposed PRIX to improve drawbacks of the query processing cost and the
false alarms of ViST [6]. PRIX transforms XML data trees and twig queries into LPS and NPS
as in Fig. 4. In PRIX, each node of a XML document tree and a twig query tree has a unique
number according to the postorder numbering scheme. LPS and NPS can be then constructed
according to the node removal method. To construct a sequence from a tree Tn with n nodes
labeled from 1 to n, the node removal method works as follows. From Tn, delete a leaf with the
smallest label to form a smaller tree Tn-1. Let a1 denote the label of the node that was the parent

496 Seo et al.: A Minimum Sequence Matching Scheme for Efficient XPath Processing

of the deleted node.

Fig. 2. The query processing of ViST

Fig. 3. False Alarms by ViST

Repeat this process on Tn-1 to determine a2 (the parent of the next node to be deleted), and

continue until only two nodes that are joined by an edge are left. The sequence (a1, a2, a3, …,
an-2) is called the Prüfer sequence of Tn. If the Prüfer sequence is constructed with numbers
assigned to nodes, then it is called NPS. If the Prüfer sequence is constructed with labels
assigned to nodes, then it is called LPS.

A twig matching of PRIX can be found by performing a subsequence matching on the set of
LPS and NPS, and by performing a structure matching with gap consistent, frequency
consistent and matching leaf nodes [6]. The twig matching is faster than that of ViST.
However, the structure matching of PRIX needs many disk I/O and time.

Tatikonda et al. have proposed LCS-TRIM to reduce the query processing cost of PRIX
[10]. LCS-TRIM uses CPS that consists of LS (Label Sequence) and NPS. The NPS of
LCS-TRIM is similar to that of PRIX. However, PRIX doesn’t take the sequence of the root
node, but LCS-TRIM takes it. Also, LS takes the labels of the deleted nodes instead of their
parent node labels. The sequence matching by using LS outperforms that by using LPS
because LPS additionally performs the matching of leaf nodes. Moreover, LCS-TRIM uses LF

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 5, October 2009 497

(Label Filtering) and DM (Dominant Match) to reduce the number of unnecessary node
accesses during structure matching. However, when processing queries with wild-cards, LF
and DM significantly degrade the query performance. Moreover, The LCS-TRIM that’s based
on main memory index is unsuitable for searching large XML documents.

 (a) XML document tree T (b) Twig query tree Q

Fig. 4. Sequences for a XML document tree and a twig query tree with PRIX and LCS-TRIM

3. The Proposed Minimum Sequence Matching Scheme

3.1 The Proposed Index Structure
Our index structure is based on ViST. One notable difference is that we use the Durable
numbering scheme [1] to avoid the Unacceptable Accesses of ViST and to more efficiently
deal with dynamic updates of XML data. Fig. 5 shows our proposed index structure on XML
Doc1 and Doc2 of Fig. 1.

(a) The suffix tree using the Durable numbering scheme (b) Our index structure

Fig. 5. Our proposed index structure.

498 Seo et al.: A Minimum Sequence Matching Scheme for Efficient XPath Processing

Another difference is that each path of the suffix tree used in our index structure is
composed of each of the paths of all XML data trees, whereas each path of the suffix tree used
in ViST is composed of all the nodes of each XML data tree. The D-Ancestor B+Tree and the
S-Ancestor B+Trees of our index structure are the same as those of ViST. However, each
S-Ancestor B+Tree of our index structure indexes the orderx and sizex values assigned by the
Durable numbering scheme. Also, we use DocID R-Tree that uses the second smallest nx
values and the largest nx values of each document as keys. Therefore, our index can find all the
DocIDs with nx values of all nodes.

3.2 The Proposed Minimum Sequence Matching Schemes
If we use the characteristic of prefix as mentioned above, the query performance can be
significantly improved. We propose achieving the minimum sequence matching by using the
characteristic of prefix and the bottom-up query processing method. In the case of a single path
query, as shown in Fig. 6, our index only executes the range query of the last node of the
structure-encoded sequence of a query. Moreover, as shown in example 3, our query
processing method is very efficient for wild-cards queries because the number of
node-accesses by our minimum sequence matching is smaller than that by ViST.

Input : Q : q1, …, qk, a query sequence

 D-Ancestor B+Tree, index of (symbol, prefix) pairs

 S-Ancestor B+Tree, index of (order, size) labels

 DocID R-Tree, mapping between the order values in node labels and document IDs

Output : all occurrences of Q in the XML data

LinearSearch(Q, k) /* k is the number of a query sequence’s nodes */

Function LinearSearch(Q, k)

 1 : while not found T do

 2 : T ← retrieve the S-Ancestor B+Tree that represents qk from the D-Ancestor B+Tree;

 3 : N ← retrieve all nodes with range inside (order, order+size) from T;

 4 : for each node c ∈ N do

 5 : Perform a query with key(order) on the DocID R-tree to output all document

 6 : IDs in that key;

 7 : end

 8 : end

Fig. 6. The minimum sequence matching of a single path query

Example 3 Consider a query “/P/*/L/v2”. The structure-encoded sequence of this query is (P,
ε)(L, P*)(v2, P*L) and the last node sequence of this query is (v2, P*L). Therefore, as shown in
Fig. 7 (a), our method performs only a range query to match (v2, P*L) in the D-Ancestor
B+Tree of Fig. 5. We find (v2, PBL) and (v2, PSL) as the result of the range query. Then, to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 5, October 2009 499

find documents involving (v2, PBL) and (v2, PSL), range queries are executed in each
S-Ancestor B+Tree of (v2, PBL) and (v2, PSL). However, the query processing method of
ViST has many disk I/O and time because of the top-down query processing method, as is
shown in Fig. 7 (b).

(a) Query processing by proposed minimum sequence matching

(b) Query processing by ViST

Fig. 7. Single path query processing phases of our method and ViST

If a twig query is processed by our minimum sequence matching for a single path query,
then false alarms occur because the structural relationship among multiple sub-queries
disassembled from a twig query is not determined. Therefore, we also propose the efficient

500 Seo et al.: A Minimum Sequence Matching Scheme for Efficient XPath Processing

minimum sequence matching for a twig query; it only executes the range queries about the leaf
nodes and branch nodes of a twig query tree, as is shown in example 4.

Example 4 Consider a query “/P/S[L/v1]/L/v2”. The structure-encoded sequence of this query
is (P, ε)(S, P)(L, PS)(v1, PSL)(L, PS)(v2, PSL). The sequence nodes for the leaf nodes of this
twig query tree are (v1, PSL) and (v2, PSL). And the sequence node for the branch node is (S,
P), as is shown in Fig. 8 (a). Fig. 8 (b) shows the twig query processing phases by the
proposed minimum sequence matching of a twig query. First, our method performs range
queries to match (v1, PSL), (v2, PSL) and (S, P) in the D-Ancestor B+Tree of Fig. 5. We find
the S-Ancestor B+Trees of (v1, PSL), (v2, PSL) and (S, P) as the results of the above range
queries. Then, by range queries of the above S-Ancestor B+Trees, we find (30, 0) as the
numbering of (v1, PSL), (41, 0) as the numbering of (v2, PSL), and (10, 20) and (31, 10) as the
numbering of (S, P). Finally, to determine the structural relationship among above numbering
values, we find the numbering values of branch node sequence involving the numbering
values of each leaf node sequence by equation (1). For example, we compute {(30, 30+0]∈10
& (41, 41+0]∈10} and {(30, 30+0]∈31 & (41, 41+0]∈31}. However, since Doc1 and Doc2
do not have the sequences of this twig query, the result of this twig query does not exist. As a
result, our minimum sequence matching has no false alarms.

(order(v1, PSL), order(v1, PSL)+size(v1, PSL)]∈order(S, P)

& (1)
(order(v2, PSL), order(v2, PSL)+size(v2, PSL)]∈order(S, P)

Fig. 8. The twig query processing phases of our method.

4. Performance Evaluation

4.1 Experimental Environment
To determine the effectiveness of our minimum sequence matching scheme, we compare the
performance of our index structure with that of ViST, PRIX and LCS-TRIM. We implemented
our XML indexing in C++. The implementation uses the B+Tree API provided by GiST [11].
Also, we get the ViST algorithm, the PRIX algorithm and LCS-TRIM algorithm from [12],
[13] and [10]. We run our experiments on 3.0GHz Pentium IV processor with 1GB RAM
running on Linux kernel 2.6. The code is compiled using the GNU g++ compiler, version 4.0.2.
A page size of 8KB is used, and 8-byte number ranges are used to label the nodes. However,
the LCS-TRIM used the buffer size of 200MB because the index is based on main memory.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 5, October 2009 501

We provided a comparison with LCS-TRIM to verify that the structure matching of
LCS-TRIM can cost more. We experiment with the datasets that are obtained from the
University of Washington’s XML repository [14]. We choose these three datasets since each
has a different characteristic, as is shown in Table 1. The document tree in the DBLP dataset
has good similarity in structure and is shallow. The document tree in the SWISSPROT dataset
is bushy and shallow. The document tree in the TREEBANK dataset is skinny and has deep
recursions of element names. Table 1 provides additional information such as the maximum
depth, the number of elements and so on for the datasets.

Table 1. The datasets used in our experiments

Data Name DBLP SWISSPROT TREEBANK
Size in MB 134 115 86

of Elements 3332130 2977031 2437666
of Attributes 404276 2189859 1

Max-depth 6 5 36
of Sequences 328858 50000 56385

The XPath queries listed in Table 2 are tested in our experiments. These queries have

different characteristics in terms of selectivity, presence of values and twig structure. Since the
values are encrypted, we choose queries without values (character data) for the TREEBANK
dataset

Table 2. The XPath queries used in our experiments

No. Query Dataset
Q1 //article/author=“E. F. Codd” DBLP
Q2 //phdthesis[/year][/number] DBLP
Q3 //inproceedings[/author=“Jim Gray”][/year=“1990”] DBLP
Q4 //Ref/Author=“Moss J” SWISSPROT
Q5 //Entry[/Org=“Piroplasmida”][/Ref/Author=“Kemp D.J”] SWISSPROT
Q6 //Entry[/PFAM[@prim-id=“PF00304”][//SIGNAL//Descr] SWISSPROT
Q7 //S//NP/SYM TREEBANK
Q8 //NP[/RBR-OR-JJR]/PP TREEBANK
Q9 //NP/PP/NP[/NNS-OR-NN][/NN] TREEBANK

4.2 Experimental Results
For evaluating various experiments, our index has two types. One, called C-index, indexes the
structure-encoded sequences and the numbering values of character data on a D-Ancestor
B+Tree and S-Ancestor B+Trees like ViST. The second, called NC-index, does not index the
structure-encoded sequences and the numbering values of character data on a D-Ancestor
B+Tree and S-Ancestor B+Trees like PRIX. Therefore, NC-index stores the values of
character data in a database and each leaf node with character data in S-Ancestor B+Trees
points each tuple with its value in a database. If NC-index has a query with character data, then
the NC-index first executes the minimum sequence matching of this query without character
data, and the NC-index then executes the matching character data between the leaf nodes of
this query and the tuples of the database.

Fig. 9 shows the performance results of the total time elapsed and physical I/O (pages read
from disk) to process queries Q1, Q2 and Q3 of the DBLP dataset. The physical I/O of

502 Seo et al.: A Minimum Sequence Matching Scheme for Efficient XPath Processing

LCS-TRIM represents the size of the used main memory. Q1 is a single path query with two
element nodes and one character data node. ViST and PRIX execute range queries on all nodes
of the structure-encoded sequence for Q1. LCS-TRIM requires scanning all of the main
memory to construct R-matrix for processing queries [10]. However, C-index executes the
range query of the leaf node of the structure-encoded sequence of Q1. Therefore, our index is
better than the other indexes. C-index is better than NC-index because NC-index additionally
requires the matching character data between the leaf node of Q1 and the tuple of the database.
Q2 and Q3 are twig queries with three element nodes and two branches, and with three element
nodes, two character data nodes and two branches, respectively. Processing a single path query
is better than processing a twig query because processing a twig query additionally requires
determining the structural relationship between multiple sub-queries disassembled from a twig
query. The performance results of NC-index and C-index to process Q2 are the same because
Q2 has no character data. Also, the performance results of Q2 are better than those of Q1
because ‘year’ element and ‘number’ element as a child of ‘phdthesis’ element are more than
‘author’ element as a child of ‘article’ element in the DBLP dataset. The performance results
of NC-index to process Q3 are more faulty than those of the others because ‘author’ element
and ‘year’ element as a child of ‘inproceedings’ element are plentiful in the DBLP dataset and
they additionally require the matching character data to process ‘Jim Gray’ element and
‘1990’ element. LCS-TRIM is better than our index because the structure matching of
LCS-TRIM is executed in the main memory.

(a) Total time elapsed for Q1, Q2 and Q3

 NC-Index C-Index PRIX ViST LCS-TRIM

Q1 8 pages 1 pages 23 pages 2,280 pages 23.61 MB
Q2 2 pages 2 pages 8 pages 17 pages 23.61 MB
Q3 39 pages 7 pages 185 pages 3,543 pages 23.61 MB

(b) Total physical I/O of Q1, Q2 and Q3

Fig. 9. The performance results of Q1, Q2 and Q3.

Fig. 10 shows the performance results of processing queries Q4, Q5 and Q6 of the
SWISSPROT dataset. Q4 is the same single path query as Q1. Processing Q4 is better than
processing Q1 because the elements that are related to Q1 are more than those related to Q4 of
the SWISSPROT dataset. The performance results of C-index to process Q1 and Q4 are the
same because the number of character data of Q1 and Q4 is same. Q5 is the same twig query as
Q3. Also, as shown in the performance results to process Q1 and Q4, processing Q5 is better
than the processing Q3 because the elements that are related to Q3 are more than those related

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 5, October 2009 503

to Q5. Q6 is a twig query with an attribute node and a wild-card ‘//’. The performance results to
process Q6 are more erroneous than those to process Q4 and Q5 because of the many range
queries to process the wild-card. But NC-index to process Q6 is better than that to process Q5
because the ‘@prim_id’ attribute and ‘Descr’ element that are related to Q6 are more than
‘Org’ and ‘Author’ elements that are related to Q5 of the SWISSPROT dataset. If a query has
wild-cards, then LF and DM of LCS-TRIM don’t construct the small R-matrix because almost
all the nodes of main memory are inserted into R-matrix to find the ancestor nodes of the nodes
that are involved in the query. Therefore, the cost of structure matching is increased.

(a) Total time elapsed for Q4, Q5 and Q6

 NC-Index C-Index PRIX ViST LCS-TRIM

Q4 2 pages 1 pages 9 pages 1,657 pages 23.14 MB
Q5 18 pages 2 pages 49 pages 1,885 pages 23.14 MB
Q6 7 pages 4 pages 83 pages 4,367 pages 23.14 MB

(b) Total physical I/O of Q4, Q5 and Q6

Fig. 10. The performance results of Q4, Q5 and Q6.

Fig. 11 shows the performance results of processing queries Q7, Q8 and Q9 of the
TREEBANK dataset. Q7 is a single path query with two wild-cards ‘//’. To process Q7, ViST
performs the range queries (S, //), (NP, //S//) and (SYM, //S//NP). The results of these range
queries cause many other range queries to produce final answers. PRIX performs the range
queries ‘S’, ‘NP’ and ‘SYM’. Also, PRIX performs the subsequence matching and refinement
phases on the set of LPS and NPS of the results of these range queries. Our index only
performs the range query (SYM, //S//NP). Therefore, our index clearly outperforms other
indexes. The TREEBANK dataset has no character data because the character data are
encrypted. The performance results of NC-index and C-Index to process each query are the
same. Q8 and Q9 are the twig queries with a wild-card ‘//’. As shown in Fig. 11, the
performance results of our index to process a single query are better than those to process a
twig query because our index additionally requires the range queries of vertex nodes to process
a twig query. However, the performance results of PRIX to process Q8 are better than those to
process Q7 because the number of LPS and NPS of processing Q7 are more than those of
processing Q8. Also, in LCS-TRIM, if the depth of the document tree is high and a query has
wild-cards, then the size of R-matrix is much increased.

Fig. 12 shows the performance results of false alarms. PRIX performs a series of refinement
phases with gap consistent and frequency consistent to avoid the false alarms of ViST.

504 Seo et al.: A Minimum Sequence Matching Scheme for Efficient XPath Processing

LCS-TRIM performs structure matching by LF and DM. Our index performs the minimum
sequence matching according to the Durable numbering scheme. As shown in Fig. 12, PRIX,
LCS-TRIM and our index have no false alarms. However, ViST has many false alarms. For
example, the DBLP dataset has 72 ‘phdthesis’ elements, 72 ‘year’ elements as a child of
‘number’ and 3 elements as a child of ‘phdthesis’. Also, there are 3 ‘phdthesis’ elements with
‘year’ element and ‘number’ element as a child. However, ViST has 4602 ‘phdthesis’
elements as the result of Q2 because if a node, y, is a child or a descendant of a node x on ViST,
then ViST treats node y as a child or a descendant of node x in spite of the fact that node y is not
a child or a descendant of node x in a XML document.

(a) Total time elapsed for Q7, Q8 and Q9

 NC-Index C-Index PRIX ViST LCS-TRIM

Q7 3 pages 3 pages 46 pages 40,827 pages 11.73 MB
Q8 4 pages 4 pages 35 pages 94,505 pages 11.73 MB
Q9 4 pages 4 pages 55 pages 121,928 pages 11.73 MB

(b) Total physical I/O of Q7, Q8 and Q9

Fig. 11. The performance results of Q7, Q8 and Q9.

Fig. 12. The performance results of the false alarms

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 5, October 2009 505

5. Conclusion
In this paper, we have presented an efficient paradigm for the XPath query processing. We
have proposed a novel index structure that uses the Durable numbering scheme and the
structure-encoded sequences of the XML tree for indexing XML data. Then, to quickly
process XPath queries, we have proposed the minimum sequence matching scheme using the
characteristic of the prefix. We have also provided empirical performance analysis to
demonstrate the efficient processing of XML queries when using our index structure. In the
future, we will study how to efficiently process the delimiters of the prefix schemes, to
decrease the label size and to maintain low-label update.

References
[1] Q. Li and B. Moon, “Indexing and Querying XML Data for Regular Path Expressions,” Proc. of

27th VLDB Conference, pp.361-370, 2001.
[2] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu, “Structural Joins:

A Primitive for Efficient XML Query Pattern Matching,” Proc. of 18th IEEE International
Conference on Data Engineering, pp.141-152, 2002.

[3] S. Y. Chien, Z. Vagena, D. Zhang, V. Tsotras, and C. Zaniolo, “Efficient Structural Joins on
Indexed XML Documents,” Proc. of 28th VLDB Conference, pp.263-274, 2002.

[4] H. Wang, S. Park, W. Fan, and P. S. Yu, “ViST: A Dynamic Index Method for Querying XML
Data by Tree Structures”, Proc. of 2003 ACM SIGMOD Conference, pp.110-121, 2003.

[5] E. M. McCreight, “A Space-Economical Suffix Tree Construction Algorithm,” Journal of the
ACM, Vol. 23, pp.262-272, 1976.

[6] P. Rao and B. Moon, “Sequencing XML Data and Query Twig for Fast Pattern Matching,” ACM
Transactions on Database Systems(TODS), pp.299-345, 2006.

[7] S. Tatikonda, S. Parthasarathy, and M. Goyder, “LCS-TRIM: Dynamic Programming Meets XML
Indexing and Querying,” Proc. of 2007 VLDB Conference, pp.63-74, 2007.

[8] C. Zhang, J. F. Naughton, D. J, DeWitt, Q. Luo, and G. M. Lohman, “On Supporting Containment
Queries in Relational Database Management Systems,” Proc. of 2001 ACM SIGMOD Conference,
pp.425-436, 2001.

[9] P. F. Dietz, “Maintaining Order in a Linked List,” Proc. of the 4th Annual ACM Symposium on
Theory of Computing, pp.122-127, 1982.

[10] S. Tatikonada, “LCS-TRIM Project,” http://www.cse.ohiostate.edu/~takidond, 2007.
[11] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer, “Generalized Search Trees for Database

Systems,” Proc. of the 21th VLDB Conference, pp.562-573, 1995.
[12] H. Wang, “The ViST Algorithm,” http://wis.cs.uda.edu/~hxwang/pub.html, 2003.
[13] B. Moon, “PRIX Project,” http://www.cs.arizona.edu/prix, 2006.
[14] G. Miklau, “UW XML Repository,” http://www.cs.washington.edu/research/xmldatasets, 2006.

506 Seo et al.: A Minimum Sequence Matching Scheme for Efficient XPath Processing

Dong-Min Seo received his B.S., M.S. and Ph.D. in Information and Communication
Engineering from Chungbuk National University, Korea in 2002, 2004 and 2008,
respectively. He is now the postdoctoral in the Dept. of Computer Science, the Korean
Advanced Institute of Science and Technology, Korea. His main research interests include
MOD (Moving-Objects Database) system, WSN (Wireless Sensor Networks) and XML
database system.

Myung-Ho Yeo received his B.S. and M.S. in Information and Communication
Engineering from Chungbuk National University, Korea in 2004 and 2006, respectively.
He is currently working towards his Ph.D. degree in the Dept. of Information and
Communication Engineering from Chungbuk National University, Korea. His main
research interests include main-memory database systems and WSN.

Myoung-Ho Kim received his B.S. and M.S. in Computer Engineering from Seoul
National University, Korea in 1982 and 1984, respectively. He received his Ph.D. in
Computer Science from Michigan State University, USA. He is now a professor in the
Dept. of Computer Science, the Korean Advanced Institute of Science and Technology,
Korea. His main research interests include database system, sensor data management, and
storage management system.

Jae-Soo Yoo received his B.S. in Computer Engineering from Chunbuk National
University, Korea in 1989, and he also received his M.S. and Ph.D. in Computer Science
from the Korean Advanced Institute of Science and Technology, Korea in 1991 and 1995.
He is now a professor in Information and Communication Engineering, Chungbuk
National University, Korea. His main research interests include database systems, sensor
data management, location based services, distributed computing and storage
management system.

