• 제목/요약/키워드: Optimized Job Scheduling Algorithm

검색결과 5건 처리시간 0.025초

Long-Term Container Allocation via Optimized Task Scheduling Through Deep Learning (OTS-DL) And High-Level Security

  • Muthakshi S;Mahesh K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1258-1275
    • /
    • 2023
  • Cloud computing is a new technology that has adapted to the traditional way of service providing. Service providers are responsible for managing the allocation of resources. Selecting suitable containers and bandwidth for job scheduling has been a challenging task for the service providers. There are several existing systems that have introduced many algorithms for resource allocation. To overcome these challenges, the proposed system introduces an Optimized Task Scheduling Algorithm with Deep Learning (OTS-DL). When a job is assigned to a Cloud Service Provider (CSP), the containers are allocated automatically. The article segregates the containers as' Long-Term Container (LTC)' and 'Short-Term Container (STC)' for resource allocation. The system leverages an 'Optimized Task Scheduling Algorithm' to maximize the resource utilisation that initially inquires for micro-task and macro-task dependencies. The bottleneck task is chosen and acted upon accordingly. Further, the system initializes a 'Deep Learning' (DL) for implementing all the progressive steps of job scheduling in the cloud. Further, to overcome container attacks and errors, the system formulates a Container Convergence (Fault Tolerance) theory with high-level security. The results demonstrate that the used optimization algorithm is more effective for implementing a complete resource allocation and solving the large-scale optimization problem of resource allocation and security issues.

반도체 생산 성능 향상 및 다양한 이송패턴을 수행할 수 있는 범용 스케줄러 알고리즘에 관한 연구 (A study of Cluster Tool Scheduler Algorithm which is Support Various Transfer Patterns and Improved Productivity)

  • 송민기;정찬호;지승도
    • 한국시뮬레이션학회논문지
    • /
    • 제19권4호
    • /
    • pp.99-109
    • /
    • 2010
  • 기존의 반도체 생산 공장에서 운용되는 공정설비의 자동화된 웨이퍼 이송을 위한 스케줄링 운용전략에 대한 연구는 일반적으로 특정 공정 환경과 시스템 형태에서 운용되는 이송패턴에 최적화시킨 규칙기반으로 진행되어 왔다. 그러나 이러한 방식은 시스템이나 공정이 달라지면 새로운 규칙이 필요하거나 전체 운용 전략을 변경해야 하는 문제가 발생할 수 있다. 또한, 규칙이 추가될수록 확장, 유지 보수 시에 추가된 규칙들의 상호 연관 작용에 대한 고려가 부족한 경우 예기치 않은 문제를 유발할 시킬 수 있는 위험성을 내포하고 있다. 따라서 본 논문에서는 이러한 문제점을 개선하기 위해 이송패턴이나 설비의 형태에 일반적으로 적용 가능한 동적 우선순위 기반의 기본 이송작업 선택 알고리즘을 제시하였다. 또한 특수한 요구 사항에 대해서는 범용성을 저하시키지 않는 범위 내에서의 최소한의 규칙 처리부를 별도로 관리하는 방식으로 운용 환경 변화에 일관된 스케줄링 정책을 유지하고 확장 시의 안정성 저하를 최소화하여 생산성 향상을 이끌 수 있는 범용 스케줄링 알고리즘을 제안하였다. 이에 대한 검증을 위하여 트윈 슬롯 형태의 반도체 공정설비를 대상으로 모델링 및 시뮬레이션 환경을 구축하였고, 시뮬레이션을 통해 타당성을 검증하였다.

An Improved Particle Swarm Optimization Algorithm for Care Worker Scheduling

  • Akjiratikarl, Chananes;Yenradee, Pisal;Drake, Paul R.
    • Industrial Engineering and Management Systems
    • /
    • 제7권2호
    • /
    • pp.171-181
    • /
    • 2008
  • Home care, known also as domiciliary care, is part of the community care service that is a responsibility of the local government authorities in the UK as well as many other countries around the world. The aim is to provide the care and support needed to assist people, particularly older people, people with physical or learning disabilities and people who need assistance due to illness to live as independently as possible in their own homes. It is performed primarily by care workers visiting clients' homes where they provide help with daily activities. This paper is concerned with the dispatching of care workers to clients in an efficient manner. The optimized routine for each care worker determines a schedule to achieve the minimum total cost (in terms of distance traveled) without violating the capacity and time window constraints. A collaborative population-based meta-heuristic called Particle Swarm Optimization (PSO) is applied to solve the problem. A particle is defined as a multi-dimensional point in space which represents the corresponding schedule for care workers and their clients. Each dimension of a particle represents a care activity and the corresponding, allocated care worker. The continuous position value of each dimension determines the care worker to be assigned and also the assignment priority. A heuristic assignment scheme is specially designed to transform the continuous position value to the discrete job schedule. This job schedule represents the potential feasible solution to the problem. The Earliest Start Time Priority with Minimum Distance Assignment (ESTPMDA) technique is developed for generating an initial solution which guides the search direction of the particle. Local improvement procedures (LIP), insertion and swap, are embedded in the PSO algorithm in order to further improve the quality of the solution. The proposed methodology is implemented, tested, and compared with existing solutions for some 'real' problem instances.

계산 그리드를 위한 커스터마이즈 가능한 글로벌 작업 스케줄러 (Customizable Global Job Scheduler for Computational Grid)

  • 황선태;허대영
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권7호
    • /
    • pp.370-379
    • /
    • 2006
  • 계산 그리드는 다양한 컴퓨팅 자원을 통합한 환경을 제공하며, 그리드 환경은 기존의 컴퓨팅 환경에 비해 매우 복잡하며 다양하다. 그리고 그리드 자원들은 각각 같지 않은 플랫폼과 서로 다른 소프트웨어들을 설치하고 있다. 계산 그리드를 보다 효율적으로 사용하기 위해서는 그리드 자원들을 효과적으로 다룰 수 있는 통합이 필요하다. 본 논문에서는 그리드의 자원을 메타 수준에서 통합하면서 동시에 다 양한 정책을 반영할 수 있는 글로벌 스케줄러를 소개한다. 이 글로벌 스케줄러는 기계적인 부분과 세개의 정책으로 구성되어 있다. 기계적인 부분은 적절한 사용자 작업과 계산 자원을 선택하기 위해서 주로 사용자 대기열과 자원 대기열을 검색한다. 이 기계적 부분을 위한 최적화된 알고리즘이 정의되었다. 또한 세개의 정책은 사용자 선택 정책, 자원 선택 정책, 자원 할당 정책으로서 이들은 계산 그리드의 운영을 잠시 중단하고 새로 정의해서 교체 할 수 있다. 예를 들면 사용자 선택 정책은 특정 사용자가 다른 사용자보다 높은 우선 순위를 가지게 하거나 할 수 있고, 자원 선택 정책은 사용자가 요구하는 컴퓨팅 자원에 부합하는 자원을 선택하도록 하며, 자원 할당 정책은 그리드 기반의 통신에서 올 수 있는 부하를 제어하여 극복 할 수 있다. 마지막으로, 사용자 선택 정책을 위한 여러 가지 알고리즘을 사용자 형평성만을 고려하여 정 의하고 이들의 성능을 측정하여 비교하였다.

유전 알고리듬을 적용한 지능형 ATP 시스템 개발 (Development of Intelligent ATP System Using Genetic Algorithm)

  • 김태영
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.131-145
    • /
    • 2010
  • ERP, SCM 등과 같은 기업용 정보 시스템을 활용함에 있어, 고객의 문의에 따라 제품 판매 가능 유무와 가능일자를 계산하여 통보해 주는 지능형 ATP 시스템은 전산 정보를 활용하여 고객 만족도를 최대화할 수 있는 유용한 기능이라고 할 수 있다. 그렇지만 공급 사슬 환경에서 ATP 시스템을 적용하려고 할 경우, 고객이 문의해 온 Retailer에게 납품 가능한 모든 분배센터(Distribution Center)와 공장(Plant)의 미래 시점의 재고량 변화와 운송 능력 등을 모두 고려하여야 하므로 계산량이 방대한 NP-Complete 문제가 된다. 따라서 시스템 사용자가 빠른 시간 내에 해를 구하여 고객에게 결과를 알려 줄 수 있는 ATP 시스템의 개발은 공급 사슬 관리를 효과적으로 활용하기 위하여 반드시 필요한 일이라고 할 수 있다. 본 논문에서는 동적 생산 함수의 개념을 이용하여 비 정수 타임 랙을 고려하여 ATP 시스템을 모델링하고, 해당 수리 모형으로부터 효율적으로 해를 얻기 위하여 유전 알고리듬을 개발하였다. 비 정수 타임 랙을 활용한 ATP 시스템은 비 정수 타임 랙을 올림이나 내림을 통하여 정수화 시킨 후 모형 수립하는 기존의 방법보다 정교하게 현실을 반영할 수 있고, ATP 시스템을 위한 유전 알고리듬의 진화 시스템은 문제크기가 작은 것에서부터 큰 것까지 최적해에 매우 근사한 값을 매우 빠른 시간 내에 풀 수 있음을 알 수 있었다.