• Title/Summary/Keyword: Optimize portion

Search Result 22, Processing Time 0.028 seconds

determination of Optimum Pipe diameter Using Multi-Stage Iterative Method in Water Distribution system (다단계 반복기법을 이용한 관로시스템의 최적관경 결정)

  • Han, Geon-Yeon;Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.327-335
    • /
    • 1998
  • The distribution network is an essential part of all water supply systems. The cost of this portion of any sizable water supply system may amount to most of the entire cost of the project. This study tried to reduce the cost of the distribution system through optimization in system design. To determine pipe diameter considered in water distribution system design, a iterative procedure linked the flow analysis model and optimization model was used. Linear theory was introduced to analyze flowrate and revised-simplex method based on linear programming is used to optimize pipe diameter. This model was applied to wter distribution system with 22 and 35 pipes, and rapidly determine optimized commercial pipe diameters. Keywords : water distribution system, revised simplex method, optimum pipe diameters.

  • PDF

Distribution Channel Model for Hotel Revenue Management: Lessons from Hoteliers and E-Intermediaries

  • IBRAHIM, Niko;PUTRA, Panca O. Hadi;HANDAYANI, Putu Wuri
    • Journal of Distribution Science
    • /
    • v.20 no.2
    • /
    • pp.19-29
    • /
    • 2022
  • Purpose: Understanding the distribution channel is a foundational element of successful hotel revenue management. This study aims to assess hotel distribution network partnerships and develops a model that can be utilized to ensure hoteliers are not becoming increasingly reliant on a single channel, optimize their market exposure, and maximize their portion of the overall worth of the network. Research design, data and methodology: This study utilizes a grounded theory approach to form a theoretical model by analyzing and examining the current practice of hotel distribution management through interviews with 15 stakeholders in Indonesia, such as hoteliers, online travel agents, wholesalers, and connectivity managers. Results: Based on data analysis, we describe hotel distribution elements, revenue team, managed channels, and channel prioritization for a different type of hotel. Finally, we propose a distribution channel model that comprises hotel teams, customer types, indirect channels, and direct channels. Conclusions: The model contributes to the literature by exploring the options of distribution channels for various hotel types to support hotel revenue management practice. By utilizing our model, practitioners can have a complete picture regarding the strategic choice of the channel by considering their hotel capacity and market target.

Optimization of the Unducted Auxiliary Ventilation for Large-Opening Underground Limestone Mines (대단면 지하 석회석 광산내 무풍관 국부통기 최적화 연구)

  • Nguyen, Van Duc;Lee, Chang Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.480-507
    • /
    • 2019
  • This paper aims at optimizing the auxiliary ventilation system in large-opening limestone mines with unducted fans. An extensive CFD and also site study were carried out for optimization at the blind entries. The fan location, operating mode, and layout are the parameters for optimization. Since the jet stream discharged from the auxiliary fan is flowing faster than 15 m/s in most of the cases, the stream collides with floor, sides or roof and even with the jet stream generated from the other fan placed upstream. Then, it is likely to lose a large portion of its inertial force and then its ventilation efficiency drops considerably. Therefore, the optimal fan installation interval is defined in this study as an interval that maximizes the uninterrupted flowing distance of the jet stream, while the cross-sectional installation location can be optimized to minimize the energy loss due to possible collision with the entry sides. Consequently, the optimization of the fan location will improve ventilation efficiency and subsequently the energy cost. A number of different three-dimensional computational domains representing a full-scale underground space were developed for the CFD study. The velocity profiles and the CO concentrations were studied to design and optimize the auxiliary ventilation system without duct and at the same time mine site experiments were carried out for comparison purposes. The ultimate goal is to optimize the auxiliary ventilation system without tubing to provide a reliable, low-cost and efficient solution to maintain the clean and safe work environment in local large-opening underground limestone mines.

The Conditions of a Holographic Homogenizer to Optimize the Intensity Uniformity (주기적인 홀로그램을 이용한 레이저 광 세기 균일화기에서 균일도를 최적화하기 위한 홀로그램의 조건)

  • Go, Chun-Soo;Oh, Yong-Ho;Lim, Sung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.578-583
    • /
    • 2011
  • We report on the design of a holographic homogenizer composed of a periodic hologram and a condensing lens. If the hologram is periodic, the homogenizer is free from the alignment error of the incident laser beam. Holographic homogenizer also has an advantage of the flexibility in the size of the target beam. We calculated theoretically the Fraunhofer diffracted wave function when a rectangular laser beam is incident on a periodic hologram. The diffracted wave is the sum of sinc functions at regular distance. The width of each sinc function depends on the size of the incident laser beam and the distance between the sinc functions depends on the period of the hologram. We calculated numerically the diffracted light intensity for various ratios of the size of the incident laser beam to the period of the hologram. The results show that it is possible to make the diffracted beam uniform at a certain value of the ratio. The uniformity is high at the central part of the target area and low near the edge. The more sinc functions are included in the target area, the larger portion of the area becomes uniform and the higher is the uniformity at the central part. Therefore, we can make efficient homogenizer if we design a hologram so that the maximum number of the diffracted beams may be included in the target area.

Operational and Performance parameters of Anaerobic Digestion of Municipal Solid Waste (도시쓰레기 혐기성소화 운용 및 성능 지표)

  • Chung, Jae-Chun;Park, Chan-Hyuk;Son, Sung-Myung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.4
    • /
    • pp.86-95
    • /
    • 2002
  • Anaerobic digestion of municipal solid waste(MSW) is recently getting attention due to energy generation and abatement of global warming. MSW has high solid content and low nitrogen content. Its major component is cellulose and hemicellulose. The conversion rate of organic portion of MSW to methane is approximately 50%, representing $0.2m^3/kg$ VS. Long hydraulic retention time is required for high solid content and inoculum should be mixed with the feed. When MSW is digested anaerobically, maximum limit of C/N ratio is 25 and the optimum concentration of $NH_3-N$ is 700mg/L. lime and sodium bicarbonate are used to adjust pH. Excess addition of sodium bicarbonate above 3,500mg/L will cause sodium toxicity. Thermophilic anaerobic digestion is effective in the control of pathogen although its operation and maintenance is difficult. To optimize the anaerobic digestion of MSW, it is necessary to understand the mechanism of microorganims involved in anaerobic digestion.

  • PDF

A Study on the Sensitivity Analysis of Offshore wind farm Design (해상풍력발전 단지배치에 따른 민감도 분석에 관한 연구)

  • Kim, Do-Hyung;Jang, Eun-young;Kyong, Nam-Ho;Kim, Hong-Woo;Kim, Sung-Hwan;Kim, Chang-Suk
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.29-35
    • /
    • 2011
  • This study draws economic expense factors according to the influence of generation resulted from slipstream and the arrangement of the complex when arranging and designing the complex for offshore windpower development as a model of 50MW offshore wind farm and conducts economics analysis. According to the result of the analysis, O (Optimize) arrangement was the one that has the highest generation for having the best windpower resources in terms of design and being least affected by slipstream; however, the arrangement requires expensive submarine cables and high installation cost. Therefore, according to the analysis of economics, it was thought that 50MW complex should have less economics as BC ratio 0.95 than the series arrangement of main wind direction and I+80 series arrangement would be rather more economical. This economics evaluation provides comparison according to the arrangement of the development complex considering the uncertainty of the electricity price and gross construction cost. And it is expected that the result of economics evaluation would greatly differ by installation capacity, and the reason is that the cost of electric infrastructure takes up a higher portion than the gross construction cost of the development complex. The only way to compensate this part is to make the windpower development complex larger. It seems that it will be necessary to enhance spot applicability to evaluate economics afterwards and pay consistent attention to and conduct follow-up research on the economics evaluation of the complex construction.

Enhanced Production of Avermectin B1a with Streptomyces avermitilis by Optimization of Medium and Glucose Feeding (배지 및 유가식 회분배양 최적화에 의한 Streptomyces avermitilist 의 Avermectin B1a 생산성 향상)

  • 이병규;김종균;강희일;이종욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.158-163
    • /
    • 2001
  • The effect of phosphate on the production of avermectin B1a was studied. Response surface methodology was applied to optimize the concentration of organic nitrogen sources. The portion of B1b in total avermectins was decreased from 5.8% to 3.0% by the addition of 1.5 g/ι inorganic phosphate to the production medium. Among organic nitrogen sources, soybean meal was the most effective on avermectin biosynthesis. Results showed that B1a productivity was increased by 44.8% in a laboratory scale fermenter cultivation of Streptomyces avermitilis YA99-40 through fed-batch process. A maximal B1a productivity was obtained by repeated 30 and 20 g/ι of glucose feeding at 136 and 206 hour, respectively. The B1a productivity was increased by 86.3% and the proportion of B1a in the total avermectins was improved from 38% to 45% with respect to the control process. These results would be very useful for enhancing productivity of B1a in an up-scaled processes.

  • PDF

Time-domain 3D Wave Propagation Modeling and Memory Management Using Graphics Processing Units (그래픽 프로세서를 이용한 시간 영역 3차원 파동 전파 모델링과 메모리 관리)

  • Kim, Ahreum;Ryu, Donghyun;Ha, Wansoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.3
    • /
    • pp.145-152
    • /
    • 2016
  • We used graphics processing units for an efficient time-domain 3D wave propagation modeling. Since graphics processing units are designed for massively parallel processes, we need to optimize the calculation and memory management to fully exploit graphics processing units. We focused on the memory management and examined the performance of programs with respect to the memory management methods. We also tested the effects of memory transfer on the performance of the program by varying the order of finite difference equation and the size of velocity models. The results show that the memory transfer takes a larger portion of the running time than that of the finite difference calculation in programs transferring whole 3D wavefield.

High-Solid Enzymatic Hydrolysis and Fermentation of Solka Floc into Ethanol

  • Um, Byung-Hwan;Hanley, Thomas R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1257-1265
    • /
    • 2008
  • To lower the cost of ethanol distillation of fermentation broths, a high initial glucose concentration is desired. However, an increase in the substrate concentration typically reduces the ethanol yield because of insufficient mass and heat transfer. In addition, different operating temperatures are required to optimize the enzymatic hydrolysis (50$^{\circ}C$) and fermentation (30$^{\circ}C$). Thus, to overcome these incompatible temperatures, saccharification followed by fermentation (SFF) was employed with relatively high solid concentrations (10% to 20%) using a portion loading method. In this study, glucose and ethanol were produced from Solka Floc, which was first digested by enzymes at 50$^{\circ}C$ for 48 h, followed by fermentation. In this process, commercial enzymes were used in combination with a recombinant strain of Zymomonas mobilis (39679:pZB4L). The effects of the substrate concentration (10% to 20%, w/v) and reactor configuration were also investigated. In the first step, the enzyme reaction was achieved using 20 FPU/g cellulose at 50$^{\circ}C$ for 96 h. The fermentation was then performed at 30$^{\circ}C$ for 96 h. The enzymatic digestibility was 50.7%, 38.4%, and 29.4% after 96 h with a baffled Rushton impeller and initial solid concentration of 10%, 15%, and 20% (w/v), respectively, which was significantly higher than that obtained with a baffled marine impeller. The highest ethanol yield of 83.6%, 73.4%, and 21.8%, based on the theoretical amount of glucose, was obtained with a substrate concentration of 10%, 15%, and 20%, respectively, which also corresponded to 80.5%, 68.6%, and 19.1%, based on the theoretical amount of the cell biomass and soluble glucose present after 48 h of SFF.

Clinical Experiences with Foreign Body Granuloma of the Nose: 7-Year Experience with 18 Patients (비부 이물 육아종의 임상적 경험)

  • Park, Tae-Hwan;Seo, Sang-Won;Kim, June-Kyu;Chang, Choong-Hyun
    • Archives of Plastic Surgery
    • /
    • v.38 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • Purpose: The injection of various materials, including medical fillers and unregulated products, is widespread, potentially causing the development of foreign body granulomas. Should this occur on the nose, the contour deformity and inflammatory signs that result from these granulomas are aesthetically undesirable to patients. The purpose of our study is to share our experiences using different surgical approaches, depending on the affected portion of the nose, to optimize management of this challenging problem and to evaluate patient's satisfaction using our in-house questionnaire along with degree of improvement by two independent plastic surgeons. Methods: We treated 18 patients who underwent surgical excision of nasal foreign body granulomas via a perilesional approach to the lesion (n=12) or by transcolumellar incision (n=6) at our hospital over a period of seven years from March 2003 to October 2010. Nonparametric statistics were used and are presented as medians (25th-75th). Patient satisfaction was evaluated on a scale of 1 to 5 using an in-house questionnaire. All pre-and post-operative photographs were analyzed by two independent plastic surgeons. Post-operative outcomes were evaluated based on the surgeons' consensus ratings. Results: All patients receiving the transcolumellar approach reported a high level of satisfaction with the results. All but two patients who received the perilesional approach were satisfied with the outcome. No outcomes were rated as no change or worse by the consensus ratings. Conclusion: For the upper two-thirds of the nose, perilesional surgical excision can lead to substantial patient satisfaction with modified contour deformity and infection control. The transcolumellar approach resulted in better outcomes and patient satisfaction for the lower one-third of the nose.