• 제목/요약/키워드: Optimization-Based Clustering

검색결과 178건 처리시간 0.027초

Identification of Fuzzy Inference Systems Using a Multi-objective Space Search Algorithm and Information Granulation

  • Huang, Wei;Oh, Sung-Kwun;Ding, Lixin;Kim, Hyun-Ki;Joo, Su-Chong
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.853-866
    • /
    • 2011
  • We propose a multi-objective space search algorithm (MSSA) and introduce the identification of fuzzy inference systems based on the MSSA and information granulation (IG). The MSSA is a multi-objective optimization algorithm whose search method is associated with the analysis of the solution space. The multi-objective mechanism of MSSA is realized using a non-dominated sorting-based multi-objective strategy. In the identification of the fuzzy inference system, the MSSA is exploited to carry out parametric optimization of the fuzzy model and to achieve its structural optimization. The granulation of information is attained using the C-Means clustering algorithm. The overall optimization of fuzzy inference systems comes in the form of two identification mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and the polynomial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by the MSSA and C-Means, whereas the parameter identification is realized via the MSSA and least squares method. The evaluation of the performance of the proposed model was conducted using three representative numerical examples such as gas furnace, NOx emission process data, and Mackey-Glass time series. The proposed model was also compared with the quality of some "conventional" fuzzy models encountered in the literature.

강화된 유전알고리즘을 이용한 이중 동조 기반 퍼지 예측시스템 설계 및 응용 (Design of Fuzzy Prediction System based on Dual Tuning using Enhanced Genetic Algorithms)

  • 방영근;이철희
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.184-191
    • /
    • 2010
  • Many researchers have been considering genetic algorithms to system optimization problems. Especially, real-coded genetic algorithms are very effective techniques because they are simpler in coding procedures than binary-coded genetic algorithms and can reduce extra works that increase the length of chromosome for wide search space. Thus, this paper presents a fuzzy system design technique to improve the performance of the fuzzy system. The proposed system consists of two procedures. The primary tuning procedure coarsely tunes fuzzy sets of the system using the k-means clustering algorithm of which the structure is very simple, and then the secondary tuning procedure finely tunes the fuzzy sets using enhanced real-coded genetic algorithms based on the primary procedure. In addition, this paper constructs multiple fuzzy systems using a data preprocessing procedure which is contrived for reflecting various characteristics of nonlinear data. Finally, the proposed fuzzy system is applied to the field of time series prediction and the effectiveness of the proposed techniques are verified by simulations of typical time series examples.

얼굴의 대칭성을 이용하여 조명 변화에 강인한 2차원 얼굴 인식 시스템 설계 (Design of Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation)

  • 김종범;오성권
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1104-1113
    • /
    • 2015
  • In this paper, we propose Two-Dimensional Robust Face Recognition System Realized with the Aid of Facial Symmetry with Illumination Variation. Preprocessing process is carried out to obtain mirror image which means new image rearranged by using difference between light and shade of right and left face based on a vertical axis of original face image. After image preprocessing, high dimensional image data is transformed to low-dimensional feature data through 2-directional and 2-dimensional Principal Component Analysis (2D)2PCA, which is one of dimensional reduction techniques. Polynomial-based Radial Basis Function Neural Network pattern classifier is used for face recognition. While FCM clustering is applied in the hidden layer, connection weights are defined as a linear polynomial function. In addition, the coefficients of linear function are learned through Weighted Least Square Estimation(WLSE). The Structural as well as parametric factors of the proposed classifier are optimized by using Particle Swarm Optimization(PSO). In the experiment, Yale B data is employed in order to confirm the advantage of the proposed methodology designed in the diverse illumination variation

A Combinatorial Optimization for Influential Factor Analysis: a Case Study of Political Preference in Korea

  • Yun, Sung Bum;Yoon, Sanghyun;Heo, Joon
    • 한국측량학회지
    • /
    • 제35권5호
    • /
    • pp.415-422
    • /
    • 2017
  • Finding influential factors from given clustering result is a typical data science problem. Genetic Algorithm based method is proposed to derive influential factors and its performance is compared with two conventional methods, Classification and Regression Tree (CART) and Chi-Squared Automatic Interaction Detection (CHAID), by using Dunn's index measure. To extract the influential factors of preference towards political parties in South Korea, the vote result of $18^{th}$ presidential election and 'Demographic', 'Health and Welfare', 'Economic' and 'Business' related data were used. Based on the analysis, reverse engineering was implemented. Implementation of reverse engineering based approach for influential factor analysis can provide new set of influential variables which can present new insight towards the data mining field.

퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기의 설계와 이의 최적화 (The Design of Polynomial Network Pattern Classifier based on Fuzzy Inference Mechanism and Its Optimization)

  • 김길성;박병준;오성권
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.970-976
    • /
    • 2007
  • 본 연구에서는 퍼지 추론 메커니즘에 기반 한 다항식 네트워크 패턴 분류기(Polynomial Network Pattern Classifier; PNC)를 설계하고 Particle Swarm Optimization 알고리즘을 이용하여 PNC 파라미터, 즉, 학습률, 모멘텀 계수, FCM 클러스터링의 퍼지화 계수(fuzzification Coefficient)를 최적화한다. 제안된 PNC 구조는 FCM 클러스터링에 기반한 분할 함수를 활성 함수로 사용하며, 다항식 함수로 구성된 연결가중치를 사용함으로서 기존 신경회로망 분류기의 선형적인 특성을 개선한다. PNC 구조는 언어적 해석관점에서 "If-then"의 퍼지 규칙으로 표현되며 퍼지 추론 메커니즘에 의해 구동된다. 즉 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 나뉘어 네트워크 구조가 형성된다. 조건부는 FCM 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 마지막으로, 네트워크의 최종출력은 추론부의 퍼지추론에 의한다. 제안된 PNC는 다항식 기반 구조의 퍼지 추론 특성으로 인해 출력 공간상에 비선형 판별 함수(nonlinear discernment function)가 생성되어 분류기로서의 성능을 높인다.

스케일이 큰 무선 센서 네트워크에서 에너지 효율적인 클러스터링을 위한 제어 메시지 전송반경 (Control Message Transmission Radius for Energy-efficient Clustering in Large Scale Wireless Sensor Networks)

  • 최혜경;강상혁
    • 한국산업정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.1-11
    • /
    • 2020
  • 본 논문은 큰 스케일의 무선센서네트워크(Wireless Sensor Networks: WSN)에서 클러스터링을 위한 제어 메시지의 최적화된 전송반경을 사용하여 전체 네트워크의 수명을 증가시키는 방법을 제안한다. 또한 스케일이 큰 네트워크에서 노드들의 제어 메시지의 최대 전송반경과 에너지 소모에 대하여 고찰한다. 이를 위하여 일반 노드가 소모하는 에너지와 클러스터 헤드가 소모하는 에너지의 함수 형태로 제어 메시지 전송반경을 분석하고, 이를 바탕으로 최적의 전송반경을 구하는 방법을 제시한다. 제안한 방법을 이용하여 싱글 홉 및 멀티 홉 등의 여러 WSN 라우팅 환경에서 시행한 시뮬레이션 성능 분석 결과를 바탕으로, 본 논문에서 제안한 방법이 기존의 방법들에 비하여 전체 네트워크의 수명을 더욱 길게 운용하는 것을 보였다.

조인트 최소거리를 고려한 다중구조물 위상최적설계 기법 (Multi-component Topology Optimization Considering Joint Distance)

  • 김준환;윤길호
    • 한국전산구조공학회논문집
    • /
    • 제35권6호
    • /
    • pp.343-349
    • /
    • 2022
  • 본 논문에서는 구조물이 다중 구조물로 연결되는 경우 연결부의 조인트 위치를 기존의 위상최적설계 기법을 활용해 설계하는 기법을 개발하였다. 조인트는 길이가 0이고 강성이 매우 강한 스프링으로 모델링되었으며, 조인트는 유한요소 메시 형상과 무관하게 이동할 수 있도록 모델링되었다. 최적화 과정에서 조인트가 서로 뭉치는 현상을 방지하기 위해 조인트 최소거리 조건을 추가해 조인트간의 최소거리가 확보된 설계를 얻었다. 최적설계 시 목적함수로는 전체 구조물의 compliance 값이 사용되었으며, 조인트 최소거리 조건에 따른 결과를 비교하기 위해 2개의 수치예제를 해석하였다. 위상최적설계 결과 조인트 최소거리 조건의 변화에 따라 조인트 및 구조물의 최적 형상을 얻을 수 있었다.

코퍼스기반 음성합성기의 데이터베이스 최적화 방안 (An Optimization of Speech Database in Corpus-based speech synthesis sytstem)

  • 장경애;정민화
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2002년도 11월 학술대회지
    • /
    • pp.209-213
    • /
    • 2002
  • This paper describes the reduction of DB without degradation of speech quality in Corpus-based Speech synthesizer of Korean language. In this paper, it is proposed that the frequency of every unit in reduced DB should reflect the frequency of units in Korean language. So, the target population of every unit is set to be proportional to their frequency in Korean large corpus(780K sentences, 45Mega phonemes). Second, the frequent instances during synthesis should be also maintained in reduced DB. To the last, it is proposed that frequency of every instance should be reflected in clustering criterion and used as criterion for selection of representative instances. The evaluation result with proposed methods reveals better quality than using conventional methods.

  • PDF

A Novel Improved Energy-Efficient Cluster Based Routing Protocol (IECRP) for Wireless Sensor Networks

  • Inam, Muhammad;Li, Zhuo;Zardari, Zulfiqar Ali
    • Journal of information and communication convergence engineering
    • /
    • 제19권2호
    • /
    • pp.67-72
    • /
    • 2021
  • Wireless sensor networks (WSNs) require an enormous number of sensor nodes (SNs) to maintain processing, sensing, and communication capabilities for monitoring targeted sensing regions. SNs are generally operated by batteries and have a significantly restricted energy consumption; therefore, it is necessary to discover optimization techniques to enhance network lifetime by saving energy. The principal focus is on reducing the energy consumption of packet sharing (transmission and receiving) and improving the network lifespan. To achieve this objective, this paper presents a novel improved energy-efficient cluster-based routing protocol (IECRP) that aims to accomplish this by decreasing the energy consumption in data forwarding and receiving using a clustering technique. Doing so, we successfully increase node energy and network lifetime. In order to confirm the improvement of our algorithm, a simulation is done using matlab, in which analysis and simulation results show that the performance of the proposed algorithm is better than that of two well-known recent benchmarks.

진화이론을 이용한 최적화 Fuzzy Set-based Polynomial Neural Networks에 관한 연구 (A Study on Genetically Optimized Fuzzy Set-based Polynomial Neural Networks)

  • 노석범;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.346-348
    • /
    • 2004
  • In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.

  • PDF