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Abstract – We propose a multi-objective space search algorithm (MSSA) and introduce the 

identification of fuzzy inference systems based on the MSSA and information granulation (IG). The 

MSSA is a multi-objective optimization algorithm whose search method is associated with the analysis 

of the solution space. The multi-objective mechanism of MSSA is realized using a non-dominated 

sorting-based multi-objective strategy. In the identification of the fuzzy inference system, the MSSA is 

exploited to carry out parametric optimization of the fuzzy model and to achieve its structural 

optimization. The granulation of information is attained using the C-Means clustering algorithm. The 

overall optimization of fuzzy inference systems comes in the form of two identification mechanisms: 

structure identification (such as the number of input variables to be used, a specific subset of input 

variables, the number of membership functions, and the polynomial type) and parameter identification 

(viz. the apexes of membership function). The structure identification is developed by the MSSA and 

C-Means, whereas the parameter identification is realized via the MSSA and least squares method. The 

evaluation of the performance of the proposed model was conducted using three representative 

numerical examples such as gas furnace, NOx emission process data, and Mackey-Glass time series. 

The proposed model was also compared with the quality of some “conventional” fuzzy models 

encountered in the literature.   
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1. Introduction 

 

Over the past decades, fuzzy modeling has been used in 

many fields of engineering, particularly in medical 

engineering, and even in the social sciences. There have 

been a number of diverse approaches to fuzzy modeling. In 

the early 1980s, linguistic modeling [1] was proposed as a 

primordial identification method for fuzzy models. Tong et 

al. [2] and Xu et al. [3] examined different approaches for 

fuzzy models. While appealing with respect to basic 

topology (a modular fuzzy model composed of a series of 

rules) [4], these models still need formal solutions in terms 

of structural optimization, say, a construction of the 

underlying fuzzy sets or the information granules viewed 

as the basic building blocks of any fuzzy model. Oh and 

Pedrycz [5] proposed some enhancements to the model, but 

the problem of finding “good” initial parameters for the 

fuzzy set in the rules remains open. Since then, several 

genetical identification methods for fuzzy models have 

been proposed. Chung and Kim [6] and others [7] 

discussed the use of genetic algorithms for fuzzy models. 

However, while all the methods reported above are based 

on information granulaton (IG) and optimization 

algorithms, there is still a lack of adequate investigation on 

the solution space explored.  

There are two main and conflicting objectives in the 

design of fuzzy systems: accuracy and complexity. The 

objective of any effective learning method is to develop an 

accurate, simple, and interpretable fuzzy model. In the 

1990s, the emphasis of modeling was placed on accuracy 

maximization. Various approaches have been proposed to 

improve the accuracy of fuzzy models using evolutionary 

and population-based optimization such as Genetic 

Algorithms (GA) and Particle Swarm Optimization [8-11]. 

These methods usually help improve the accuracy of the 

resulting fuzzy model. The complexity of the model 

increases as a result of the accuracy maximization. Some 

researchers have attempted to optimize simultaneously the 

accuracy and complexity of fuzzy models [12-13]. 

However, this objective is impossible to achieve due to the 

existence of the accuracy-complexity tradeoff. Recently, 

accuracy maximization and complexity minimization have 

often been cast in the setting of multi-objective 

optimization. A number of evolutionary algorithms (EAs) 

†  Corresponding Author: Dept. of Electrical Engineering, The Univer-

sity of Suwon, Korea. (ohsk@suwon.ac.kr) 

*  State Key Laboratory of Software Engineering, Wuhan University, 

China. 

**  School of Computer and Communication Engineering, Tianjin 

Univerity of Technology, China. (huangwabc@163.com) 

*** Dept. of Electrical Engineering, The University of Suwon, Korea 

§ Dept .  of Computer Engineering, Wonkwang University, Korea. 

(scjoo@wonkwang.ac.kr)   

Received: September 7, 2010; Accepted: March 11, 2011 



Identification of Fuzzy Inference Systems Using a Multi-objective Space Search Algorithm and Information Granulation   

 

854 

have been developed to solve multi-objective optimization 

problems such as Micro-GA [14], NSGA-II [15], and so on 

[16-18]. These EAs are population-based algorithms which 

may explore different portions of the Pareto front 

simultaneously. As a result, multi-objective optimization 

(MOO) techniques have been applied to design fuzzy 

systems exhibiting high accuracy and significant 

interpretability [19, 20]. Nevertheless, when dealing with 

the IG-based fuzzy model, previous studies lack an 

optimization vehicle which considers not only the solution 

space being explored but also the techniques of MOO. 

In the current study, we present a multi-objective space 

search algorithm (MSSA) and introduce a fuzzy 

identification of fuzzy inference systems using the MSSA 

and IG. MSSA was also used to maximize the accuracy of 

the Information Granule-based Fuzzy Inference System 

(IG-FIS) and to solve the problems presented earlier. The 

optimization is of multi-objective character so we have to 

deal with the simplicity and accuracy of the model. To 

reflect the multi-objective character of the design, we 

consider the mean squared error (root mean squared error) 

to quantify accuracy, structure complexity, and the total 

number of polynomial coefficients in the consequence part 

of the fuzzy rules in order to demostrate the simplicity of 

the model. The optimization process consists of two 

identification phases: structure identification and parameter 

identification. Information granulation is realized using 

Hard C-Means (HCM), the MSSA, and the Least squares 

Method (LSM). HCM is used to determine the initial 

parameters of the fuzzy model such as the initial location 

of the apexes of the membership functions and the 

prototypes of the polynomial functions used in the premise 

and consequence parts of the fuzzy rules. On the other 

hand, the MSSA and LSM are used to adjust the initial 

values of the parameters. In short, the MSSA is employed 

to carry out parametric optimization of the fuzzy model 

and to realize its structural optimization. 

The organization of the paper reflects its main objectives. 

Section 2 introduces the design of the IG-FIS. Section 3 

presents the MSSA and a multi-objective optimization of 

IG-FIS using the MSSA. Section 4 reports the 

experimental results. Finally, Section 5 presents the 

conclusions. 
 
 

 

2. A Design of the IG-Based Fuzzy Model 

 

In essence, information granules are viewed as highly 

related collections of objects (particularly data points) 

drawn together by some criteria of proximity, similarity, or 

functionality. Granulation of information is an inherent and 

omnipresent activity of human beings carried out with the 

aim of obtaining a better and more effective insight into a 

problem and arriving at its efficient solution. In particular, 

granulation of information aims to break down the problem 

at hand into smaller ones, making it easier to solve. This 

way, we have to partition the task into a series of well-

defined subproblems (modules) with a far lower 

computational complexity than the original one. The 

identification procedure for fuzzy models is categorized 

into identification activities that deal with the development 

of the premise and the consequence part of rules. The 

identification completed at the premise level consists of 

two main steps. First, we select the input variables x1, x2, 

…, xk of the rules. Second, we form fuzzy partitions (by 

specifying fuzzy sets of well-defined semantics such as low, 

high, etc.) of the spaces over which these individual 

variables are defined. In this sense, this phase is all about 

information granulation of the elements of the fuzzy 

partitions we are interested in when developing any rule-

based model. The number of fuzzy sets constructed implies 

directly the number of rules of the model itself. In addition, 

the membership functions of the information granules have 

to be determined. 

The identification of the premise part is completed in the 

following manner: 

Given a set of data U={x1, x2, …, xl ; y}, where xk =[x1k, 

…, xmk]
T, y =[y1, …, ym]T, l is the number of variables, and 

m is the number of data. 

[Step 1] Arrange a set of data U into data set Xk 

composed of the corresponding input and output data. 

 

 Xk=[xk ; y]               (1) 

 

[Step 2] Run the K-Means to determine the centers 

(prototypes) vkg within the data set Xk. 

[Step 2-1] Arrange data set Xk into c-clusters (in essence, 

this is effectively the granulation of information) 

[Step 2-2] Calculate the centers vkg of each cluster. 
 

 1 2v { , , , }kg k k kcv v v= …        (2) 

 
[Step 3] Partition the corresponding input space using 

the prototypes of the clusters vkg. Associate each cluster 

with some meanings (semantics) such as small, large, 

and so on. 

[Step 4] Set the initial apexes of the membership 

functions using the prototypes vkg. 

For consequence identification, we consider the initial 

values of the polynomial functions based on the 

information granulation realized for the consequence and 

premise part.  

[Step 1] Find a set of data included in the fuzzy space of 

the j-th rule. 

[Step 2] Compute the prototypes Vj of the data set by 

taking the arithmetic mean of each rule. 
 

 1 2V { , , , ; }j j j kj jV V V M= …         (3) 

 
[Step 3] Set the initial values of polynomial functions 

with the center vectors Vj. 
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The identification of the conclusion parts of the rules 

deals with the selection of their structures (Type 1, Type 2, 

Type 3, and Type 4) which is followed by the 

determination of the respective parameters of the local 

functions occurring in it. The consequence part of the rule 

extended from a typical fuzzy rule in the Takagi–Sugeno–

Kang fuzzy model has the following form: 

 

 
1 1

1

:

( , , )

j
c k kc

j j j k

R If x is A and and x is A

then y M f x x− =

⋯

⋯

     (4) 

 

Type 1 (Simplified Inference):  

 

 0j jf a=  

 

Type 2 (Linear Inference): 

 

 0 1 1 1( ) ( )j j j j jk k jkf a a x V a x V= + − + + −⋯  

 

Type 3 (Quadratic Inference):  

 
2

0 1 1 1 ( 1) 1 1

2
(2 ) (2 1) 1 1 2 2

(( 2)( 1) / 2) 1 ( 1)

( ) ( ) ( )

( ) ( )( )

( )( )

j j j j jk k kj j k j

j k k kj j k j j

j k k k k j k kj

f a a x V a x V a x V

a x V a x V x V

a x V x V

+

+

+ + − −

= + − + + − + − +

+ − + − − +

+ − −

⋯

⋯ ⋯  

 

Type 4 (Modified Quadratic Inference):  

 

0 1 1 1 ( 1) 1 1 2 2

( ( 1) / 2) 1 ( 1)

( ) ( ) ( )( )

( )( )

j j j j jk k kj j k j j

j k k k k j k kj

f a a x V a x V a x V x V

a x V x V

+

+ − −

= + − + + − + − −

+ + − −

⋯

⋯

 

 

where jR is the j-th fuzzy rule, xk represents the input 

variables, Akc is a membership function of fuzzy sets, ajk is 

a constant, Vkj and Mj are the center values of the input and 

output data, respectively, and n is the number of fuzzy 

rules. 

The calculation of the numeric output of the model 

based on the activation (matching) levels of rules relies on 

the following expressions: 

 

 

1

1 1*

1 1

1

1

( ( , , ) )

ˆ ( ( , , ) )

n n

ji i ji j k j

j j

n n

ji ji

j j

n

ji j k j

j

w y w f x x M

y

w w

w f x x M

= =

= =

=

+

= =

= +

∑ ∑

∑ ∑

∑

⋯

⋯

    (5) 

 

where y* is the inferred output value, and wji is the premise 

level of matching jR (activation level). Given the 

normalized value of wji, we use an abbreviated notation to 

describe an activation level of rule jR as follows: 

 

1

ˆ
ji

ji n

ji

j

w
w

w

=

=

∑ , 

1 1

1 1

1

( ) ( )
ˆ

( ) ( )

j i jk ki

ji n

j i jk ki

j

A x A x
w

A x A x

=

× ×
=

× ×∑

⋯

⋯

   (6) 

 
The consequence parameters ajk can be determined by 

the standard LSM, which leads to the following expression: 

 

 -1ˆ ( )T T=a X X X Y                 (7) 

 

In the case of Type 2 scheme,  

 

 10 0 11 1 1
ˆ [ ]Tn n k nka a a a a a=a ⋯ ⋯ ⋯ ⋯ , 

 1 2[ ]Ti m=X x x x x⋯ ⋯ ,  

 T
i =x [ 1ˆ iw ⋯ ˆniw   

 1 11 1ˆ( )i ix V w− ⋯ 1 1 ˆ( )i n nix V w− ⋯ 1 1ˆ( )ki k ix V w− ⋯  

 ˆ( )ki kn nix V w− ], 

 

1 1 2 2

1 1 1

T
n n n

j j j j m j jm

j j j

y M w y M w y M w

= = =

                 = − − −                     
∑ ∑ ∑Y ⋯  

 

 

3. Multi-objective Optimization of  

the IG-Based FIS 

 

Many real-world optimization problems [21] come with 

multiple objectives which not only interact but may also be 

in conflict. The main objective of the multi-objective 

optimization algorithm is to determine a Pareto-optimal set. 

This optimal set balances the tradeoffs among the 

conflicting objectives. Multi-objective optimization 

generates the Pareto front which is the set of non-

dominated solutions. A solution is non-dominated if 

improving one objective of the solution is impossible 

without worsening at least one of the other objectives 

presented in the problem. In the current work, we utilize 

the MSSA as the optimization vehicle of IG-FIS. 

 

3.1 MSSA  
 

First, we discuss a space search algorithm (SSA) with a 

single object. The SSA is an adaptive heuristic 

optimization algorithm whose search method comes with 

the analysis of the solution space [22]. To illustrate the 

idea of the SSA, let us consider why an evolutionary 

algorithm (such as the well-known genetic algorithm) can 

find the optimal solution. In fact, a precondition should be 

satisfied when the evolutionary algorithm can find the 

optimal solution. The precondition is that in most local 

areas, a point (solution) and the other points located in the 

point’s adjacent space have similar values of the objective 

function (fitness values). In other words, in most local 
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areas, a solution with better fitness is closer to the optimal 

solution. Moreover, if we take the entire space as the 

biggest local area into consideration, the precondition can 

be satisfied for any target optimization problems. Based on 

this observation, we may give rise to a space search 

mechanism to update the current solutions. The role of this 

space search is to generate new solutions from old ones. 

The search method is based on the operator of the space 

search, which generates two basic steps: generate new 

subspace (local area) and search the new space. The latter 

is realized by generating randomly a new solution 

(individual) located in this space. Regarding the generation 

of a new space, we consider two cases: (a) space search 

based on M selected solutions (denoted here as Case I) and 

(b) space search based on one selected solution (Case II). 

In Case I, the new subspace (local area) is generated by 

M selected solutions (individuals). The core issue is how to 

determine the adjacent space based on M solutions. For 

convenience, a solution X  can be presented in another 

way 1 2( , ,......, )nX x x x= , where n  is the index of the 

dimension. Regarding M  solutions, we use the following 

representations: 
1 2( , ,......, )

n

k k k kX x x x= , 1,2,......,k M= . 

To adjust the size of the new generating subspace, we use 

the coefficients [ , ]ia l u∈  as parameters, where l and u are 

the given numbers. Suppose V  is the new generating 

space, newX  is a new feasible solution generated 

randomly on the basis of V , where newX =  

1 2( , ,......, )
n

new new newx x x , and S is the entire feasible solution 

space. The new space can be determined by the following 

expression: 

 

1 1

{ , 1, }

M M
new new k new

i i i i i

k i

V X x a x X S where a l a u

= =

= = ∪ ∈ = ≤ ≤∑ ∑  

   (8) 

 

Fig. 1 depicts the different subspaces generated by M 

solutions using different parameters when the index of the 

dimension of a feasible solution is equal to 2. In this case, 

M solutions can be presented as 
 

 
1 2

( , )k k kX x x= ,  

 
where [ , ], 1, 2

i

k
i ix l u i∈ = , and 1,2,......,k M= . The four 

points 
1

minx , 
2

minx , 
1

maxx , 
2

maxx  are the minimum of 1
kx , 

the minimum of 2
kx , the maximum of 1

kx , and the 

maximum of 2
kx , respectively. The search space V is equal 

to S1 in case of [0,1]ia ∈ . S2 is the search space of V in 

case of [ , ]ia l u∈ , where 0,l <  and 1.u>  In the present 

study, we search the adjacent space S2 and set [ 1, 2]ia ∈ − . 

We generate the new space 1V  based on the following 

expression: 

 

1

1 1

{ , 1, 1 2}

M M
new new k new

i i i i i

k i

V X x a x X S where a a

= =

= = ∪ ∈ = − ≤ ≤∑ ∑  

   (9) 

min

1x
max

1x

min

2x

max

2x

 

Fig. 1. Different spaces generated from M solutions using 

different parameters (Case I) 

 

In Case II, the space search operation is based on a given 

solution which is the best solution in the current solution 

set(population). The role of this operator is to adjust the 

best solution by searching its adjacent space. Assume that 

the best solution in the current solution set is denoted by 

the following: 
 

 
1 2

( , ,......, )
n

best best best bestX x x x=   

 
where [ , ], 1,2,......, .

i

best
i ix l u i n∈ =  We generate the new 

space 2V  based on the following expression: 

 

2 1 2 1 1{ | ( , ,......, , , ,......, )

, [ , ]}

new new best best best new best best
i i i n

new best new
i i i i i

V X X x x x x x x

where x x x l u

− += =

≠ ∪ ∈
 

   (10) 
 
Fig. 2(a) illustrates the new space generated from the 

current best solution when the index of the dimension of a 

feasible solution is equal to 2. The current best solution can 

be presented as follows:  

 

 
1 2

( , )best best bestX x x= ,  

 

where [ , ]
i

best
i ix l u∈ , 1,2i= .  

In this case, the value of 
2

bestx  is the same as the 

corresponding value of bestX , whereas the value of 1x  

ranges from 1l  to 1u . The new space is in essence a line 

in the solution space. Moreover, we can use the extension 

space based on 2V  by adding the point
i

newx , 

where {1,2,......, }i n∈ . For example, assuming that the 

dimension of a feasible solution is equal to 3, the extension 

space 3V  is expressed as follows: 

 

3 1 2 1 1 1 1{ | ( , ,..., , , ,..., , , ,......, ),

[ , ] [ , ]}

new new best best best new best best new best best
i i i j j j n

new best new best new new
i i j j i i i j i i

V X X x x x x x x x x x

where x x x x x l u x l u

− + − += =

≠ ∪ ≠ ∪ ∈ ∪ ∈
 

   (11) 



Wei Huang, Sung-Kwun Oh, Lixin Ding, Hyun-Ki Kim and Su-Chong Joo  

 

857 

For convenience, we have to consider that the index of 

the dimension of a feasible solution is equal to 3. Suppose 

that the current best solution is denoted by 

1 2 3
( , , )best best best bestX x x x= , where 

3
5bestx = , 0il = , 

100, 1, 2,3iu i= = . The new space generated by the 

extension space such as 3V  is shown in Fig. 2(b). 

 

2

bestx

 

(a) Use of V2 in the case of two dimensions 

 

 

(b) Use of V3 in the case of three dimensions 

Fig. 2. Space generated from a given solution (Case II) 

 

With the understanding of the SSA, we can develop the 

MSSA. So far, several techniques have been incorporated 

into multi-objective optimization algorithms in order to 

improve convergence to the Pareto front ands to produce a 

well-distributed Pareto front. These techniques include 

elitism, diversity operators, mutation operators, and 

constraint handling. The technique of a non-dominant sort 

and the crowding distance in MSSA are based on the 

NSGAII [15]. 

Fig. 3 illustrates the overall flowchart of MSSA. The 

operator of the search space is realized by the following 

two basic steps: generate a new subspace (local area) and 

search the new space. The non-dominated sort is realized 

using estimation of the crowding distance among solutions 

in the current solution set S. The detailed overall algorithm 

can be outlined in the following sequence of steps: 

Step 1. Initialize (generate randomly) the solution set, 

1 2( , ,......, )mP X X X= , where m is the index of the 

dimension. 

Step 2. Evaluate each feasible solution iX , where 
1,2,......,i m= . 

Step 3. Search space based on M solutions (Case I). 

Step 3.1 Select M number solutions randomly from the 

current solution set, where M is a given number. 

Step 3.2 Generate a new subspace from the M solutions 

according to (2). 

Step 3.3 Generate a new solution randomly in the new 

space. 

Step 3.4 Add the new solution in the solution set.  

Step 4. Sort the current population based on non-

domination. 

Step 5. Remove the worst solution from the current 

solution set.  

Step 6. Search space based on the current best solution 

(Case II). 

Step 6.1 Select the current best solution from the current 

solution set. 

Step 6.2 Generate a new subspace based on the current 

best solution according to (3). 

Step 6.3 Generate a new solution randomly in the new 

space. 

Step 6.4 Add the new solution in the solution set.  

Step 7. Sort the current population based on non-

domination. 

Step 8. Remove the worst solution from the current 

 

Fig. 3. Overall flowchart of the MSSA 
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solution set.  

Step 9. If the number of iterations equals to N, go to step 

3, where N is a given large number (terminal condition). 

Step 10. Report the optimal solutions. 

 

3.2 Arrangement of Solutions in the MSSA  

 

When running the optimization method, we distinguish 

the two main categories of adjustment: sequential [23] and 

successive tuning [24]. In sequential tuning, structural and 

parametric optimization are carried out sequentially. First, 

structural optimization is completed, and then we proceed 

with the parametric optimization phase. The structural 

optimization of the fuzzy model is carried out assuming 

that the apexes of the membership functions are kept fixed. 

The fixed apexes of the membership functions are taken as 

the center values produced by the C-Means algorithm, 

whereas parametric optimization is applied to the fuzzy 

model derived through structural optimization. In other 

words, when the fixed apexes of the membership functions 

corresponding to the center values of the clusters obtained 

by the C-Means method are provided, the structural 

optimization takes into consideration the change in 

parameters such as the number of membership functions, 

number of input, polynomial order, and a collection of 

specific subsets of input variables. Then parametric 

optimization is carried out to fine-tune the apexes of the 

membership functions. 

Fig. 4 depicts the arrangement of solutions in the 

MSSA-based sequential tuning method. The first part of 

structural optimization is separated from its second part 

which is used for parametric optimization. The size of the 

solutions for the structural optimization of the IG-based 

fuzzy model is determined according to the number of all 

input variables of the system. The size of the solutions for 

parametric optimization depends on the structurally 

optimized fuzzy inference system. In short, from the 

viewpoint of structure identification, only one fixed 

parameter set is considered to carry out the overall 

structural optimization of the fuzzy model. This set 

consists of the assigned apexes of the membership 

functions obtained by C-Means clustering. From the 

viewpoint of parameter identification, only one structurally 

optimized model obtained during the structure 

identification is considered to be involved in the overall 

parametric optimization. In order to construct the 

optimized IG-based fuzzy model, the range of the search 

space for the structural and parametric optimization is 

restricted strictly to the sequential tuning method. 

To address the problem, we present the MSSA-based 

successive tuning method. In this method, we achieve both 

structural and parametric optimization of the model 

simultaneously. Fig. 5 shows the arrangement of solutions 

used for the successive tuning method. The second part of 

parameter identification is linked up with the first part of 

structure identification within a solution (an individual). 

The size and arrangement of the first part for structure 

identification is the same as those in the sequential tuning 

method, whereas the size of the second part of parameter 

identification is determined by considering both the 

number of the system’s input variables and the number of 

membership functions used in their representation. In the 

successive tuning method, a stochastic variable (a variant 

identification ratio; see Fig. 6) used within a modified 

simple search space operator in the MSSA is used to 

support an efficient successive tuning, including both the 

structural and parametric optimization of the model. 

During the initial generations of the SSA, the space search 

1 2 3 4 5 6x x x x x x

6

1

i

i

y
=
∑

1 1,

0 1.

i

i

i

x
y

x

>
= 

=

1ix >ix

1ix > 1ix =ixix

 

Fig. 4. Arrangement of solutions in the sequential tuning 

method 
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operator is assigned with a higher probability to the 

solution region involving the first part, which is 

responsible for structural optimization. This probability 

becomes lower when dealing with a region of the solution 

involving the second part responsible for parametric 

optimization. This way, the optimization becomes focused 

predominantly on structural optimization. Over the course 

of the space search optimization (for higher generations), 

the probability that the first part can be generated 

(assigned) within the second part, which is responsible for 

parametric optimization, gradually increases. In this sense, 

the optimization of the IG-based fuzzy set model becomes 

focused predominantly on parametric optimization. 

In the first step of the sequential tuning method, the 

“topology (structure)-only search with fixed parameters” is 

carried out for optimization. In the next step, the 

“parameter-only search with fixed topology (structure)” is 

conducted for optimization. In the successive tuning 

method, the second part related to the parametric 

optimization of the model is connected serially with the 

first part related to the structural optimization of the model. 

Therefore, a “simultaneous topology/parameter search” is 

carried out for optimization. Moreover, the successive 

tuning method enables us to consider a much more 

extensive topology/parameter search space for optimization 

compared with the sequential tuning method. The space 

search operator in the MSSA for the successive tuning 

method realized using a variant identification ratio is used. 

Parameters such as gen, maxgen, and λ should be given. 

gen is an index of the current generation, whereas maxgen 

represents the maximum number of generations used in the 

algorithm; λ serves as some adjustment coefficient whose 

values can determine a variant identification ratio (p) for 

both structural and parametric optimization. The scheme of 

the space search operator in the MSSA algorithm is shown 

in Fig. 6. 

 

3.3 Objective functions of IG-FIS 

 

Three objective functions are used to evaluate the 

accuracy and complexity of an IG-FIS: performance 

indexes, entropy of partition, and the total number of the 

coefficients of the polynomials to be estimated. Once the 

input variables of the premise part have been specified, the 

optimal consequence parameters that minimize the 

assumed performance index can be determined. 

We consider two performance indexes, the standard root 

mean squared error (RMSE) and the mean squared error 

(MSE). 
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∑
  

(12) 

 

where y* is the output of the fuzzy model, m is the total 

number of data, and i is the data index. 

The accuracy criterion E includes both the training data 

and the testing data, and comes as a convex combination of 

the two components: 
 

 (1 ) _E θ PI θ E PI= × + − ×        (13) 

 

PI and E_PI denote the performance index for the 

training data and testing data, respectively. θ  is a 

weighting factor that allows us to strike a sound balance 

between the performance of the model for the training and 

testing data. Depending on the values of the weighting 

factor, several specific cases of the objective function are 

worth distinguishing. 

 

Fig. 5. Arrangement of solutions in the successive tuning 

method 

 

While { the termination conditions are not met } 

Select M solutions (parent individuals) from the 

current solution set, where M is a given number.  

Generate random variable (r1). 

Calculate a variant identification ratio (p) which is a 

generation-based stochastic variable of the form 

1 (1 / max )r gen gen
p

λ

+ −
=   

IF {p > 0.5} 

Search the solution space within the first part of 

solutions for structural optimization. 

Else 

Search the solution space within the second part of 

solutions for parametric optimization. 

End IF 

Complete the space search operation. 

End while 

Fig. 6. Scheme of the space search operator in the MSSA in 

pseudo-code 
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(i) If 1θ =  then the model is optimized based on the 

training data. No testing data is taken into consideration.  

(ii) If 0.5θ = , then both the training and the testing 

data are taken into account. Moreover, they are assumed to 

exhibit the same effect on the performance of the model. 

(iii) The case θ α=  where [0, 1]α ∈  embraces both 

the cases stated above. The choice of α  establishes a 

certain tradeoff between the approximation and 

generalization aspects of the fuzzy model.  

As a measure for evaluating the structure complexity of 

a model, we consider the following partition criterion:   
 

 
1

n

i

i

H F

=

=∏                   (14) 

 
where n is the total number of selected input variables, and 

Fi is the number of membership functions for the ith 

corresponding input variable. 

As a simplicity criterion, we consider the consequence 

part of the local models, which is computed as follows:  
 

 
1

n

i

j

N C

=

=∑ ,  

1 if type of local model is constant
1 if type of local model is linear form
2

1 ( ) / 2 if type of local model is quadratic form

2 if type of local model is modified quadratic form1 ( ) / 2

l
Ci l l l l

l l l

 +=
 + + − + + + −

 

   (15) 
 

where iC  is the number of coefficients of the ith 

polynomial, and l stands for the number of input variables. 

In a nutshell, we find the Pareto optimal sets and Pareto 

front by minimizing {E, H, N} using the MSSA. This leads 

to interpretable, simple, and accurate fuzzy models. 

 

4. Experimental Studies 

 

This section reports on comprehensive numeric studies 

illustrating the design of the fuzzy model. Three well-

known data sets are used. Each data set is divided into two 

parts of the same size. PI denotes the performance index for 

the training data, and E_PI represents the testing data. In 

all considerations, the weighting factor θ  was set to 0.5. 

The parameters of the MSSA are set as follows. We use 

100 generations and a size of 200 populations (solutions) 

for structure identification, and run the method for 1,000 

generations. The population size is 60 for parameter 

identification. In each generation, we first search the space 

based on 8 solutions generated randomly and then search 

the space based on the current best solution. In the 

simultaneous tuning method, λ is set as 2.0. 
 
4.1 Gas Furnace Process 

 

The first well-known data set is the time-series data of a 

gas furnace utilized by Box and Jenkins. The time-series 

data which consist of 296 input-output pairs resulting from 

the gas furnace process have been studied extensively in 

the literature [1-5]. The delayed terms of methane gas flow 

rate ( )u t  and carbon dioxide density ( )y t  are used as six 

input variables with vector formats such as [ ( 3),u t−  
( 2), ( 1), ( 3), ( 2), ( 1)].u t u t y t y t y t− − − − −  Carbon density 
( )y t  is used as output variable. MSE is considered as the 

performance index.  

The gas furnace process is partitioned into two parts. 

The first 148 pairs are used as the training data, whereas 

the remaining 148 pairs are used as the testing data set for 

assessing predictive performance. Fig. 7 illustrates the 

Pareto fronts generated using the MSSA in the case of the 
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(a) Pareto front (three dimensions) 
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(b) Pareto front (two dimensions: H and E) 
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(c) Pareto front (two dimensions: N and E) 

Fig. 7. Pareto front produced by the MSSA in the case of 

the sequential tuning method (Gas) 
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sequential tuning method. Generally, as expected, by 

increasing the number of coefficients or rules, the accuracy 

of IG-FIS is increased. Table 1 summarizes the 

performance values of the solution (individual) objective 

functions (E, H, N) of the IG-FIS. 
 

Table 1. Optimal solutions using the sequential tuning 

method (Gas) 

Objective values 
 

Selected input 

variables 

No. 

of 

MFs 

Type PI E_PI 
E H N 

1 1,6 3,3 4 0.015 0.257 0.136 9 36 

2 1,6 2,2 3 0.017 0.266 0.142 4 24 

3 5,6 3,2 2 0.087 0.193 0.140 6 18 

4 5,6 2,2 4 0.087 0.197 0.142 4 16 

5 5,6 2,2 2 0.091 0.196 0.144 4 12 

6 5,6 2,3 1 0.119 0.247 0.183 6 6 

7 1,6 2,2 1 0.097 0.424 0.260 4 4 
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(a) Pareto front (three dimensions) 
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(b) Pareto front (two dimensions: H and E) 
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(c) Pareto front (two dimensions: N and E) 

Fig. 8. Pareto front produced by the MSSA in the case of 

the simultaneous tuning method (Gas) 

Fig. 8 depicts the Pareto fronts generated using the 

MSSA in the case of the simultaneous tuning method. The 

results of the proposed model are summarized in Table 2. 

 

Table 2. Optimal solutions using the simultaneous tuning 

method (Gas) 

Objective values 
 

Selected  

input 

variables 

No. 

of 

MFs 

Type PI E_PI 
E H N 

1 5,6 3,3 4 0.074 0.202 0.138 9 36 

2 1,6 2,3 3 0.015 0.260 0.138 6 36 

3 1,6 2,3 4 0.018 0.266 0.142 6 24 

4 1,6 2,2 3 0.017 0.266 0.142 4 24 

5 5,6 2,2 4 0.088 0.195 0.141 4 16 

6 5,6 2,2 2 0.091 0.196 0.144 4 12 

7 1,6 2,3 1 0.063 0.391 0.227 6 6 

8 2,6 2,2 1 0.167 0.512 0.339 4 4 

 

Table 3 presents a comparative analysis of some existing 

models. We consider the performance values of the 

individual objective functions (E, H, N) of the IG-FIS 

within the Pareto optimal set (refer to Tables 1 and 2, 

marked shadow). As can be seen, the proposed model 

compares favorably both in terms of accuracy and 

prediction capabilities. 

 

 

Table 3. Results of selected models (Gas) 

Model Pit PI E_PI No.of rules 

Pedrycz's model [1] 0.776   20 

Tong's model [2] 0.469   19 

Xu's model [3] 0.328   25 

Sugeno's model [4] 0.355   6 

Simplified  0.024 0.328 4 

 0.022 0.326 4 
Oh et al.'s 

Model [5] Linear 
 0.021 0.364 6 

 0.035 0.289 4 
Simplified 

 0.022 0.333 6 

 0.026 0.272 4 

HCM+GA 

[7] 
Linear 

 0.020 0.264 6 

Sequential tuning  0.017 0.266 4 
Our model 

Simultaneous tuning  0.015 0.260 6 

 

 

4.2 NOx Emission Process Data  

 

The NOx emission process is also modeled using the 

data of gas turbine power plants. A NOx emission process 

of a GE gas turbine power plant located in Virginia, USA is 

chosen in the experiment. The input variables include AT 

(ambient temperature a site), CS (compressor speed), LPTS 

(low pressure turbine speed), CDP (compressor discharge 

pressure), and TET (turbine exhaust temperature). The 

output variable is NOx, and the performance index is MSE 

defined by Eq. (12). 

Fig. 10 depicts the Pareto fronts generated using the 

MSSA in the case of the simultaneous tuning method. The 

results of the proposed model are shown in Table 5. 
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(a) Pareto front (three dimensions) 
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(b) Pareto front (two dimensions: H and E) 
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(c) Pareto front (two dimensions: N and E) 

Fig. 9. Pareto front produced by the MSSA in the case of 

the sequential tuning method (NOx) 

 

Table 4. Optimal solutions using the sequential tuning 

method (NOx) 

Objective values 
 

Selected input 

variables 

No. of 

MFs 
Type PI E_PI 

E H N 

1 2,3,4,5 2,2,2,2 2 0.017 0.084 0.051 16 80 

2 1,4,5 2,2,2 3 0.022 0.084 0.053 8 80 

3 2,4,5 2,2,2 2 0.907 2.843 0.019 8 32 

4 1,4 2,2 3 1.026 0.831 0.928 4 24 

5 4,5 2,2 4 5.520 8.534 7.027 4 16 

6 4,5 2,2 2 6.703 9.671 8.187 4 12 

7 1,4,5 2,2,2 1 9.221 11.78 10.50 8 8 

8 4,5 2,2 1 13.60 20.23 16.92 4 4 
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(a) Pareto front (three dimensions) 
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(b) Pareto front (two dimensions: H and E) 
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(c) Pareto front (two dimensions: N and E) 

Fig. 10. Pareto front produced by the MSSA in the case of 

the simultaneous tuning method (NOx) 

 

Table 5. Optimal solutions using the simultaneous tuning 

method (NOx) 

Objective values 
 

Selected input 

variables 

No. of 

MFs 
Type PI E_PI 

E H N 

1 1,4,5 2,2,2 3 0.0163 0.057 0.037 8 80 

2 1,4,5 2,2,2 4 0.0565 0.220 0.138 8 56 

3 1,4,5 2,2,2 2 0.502 0.521 0.511 8 32 

4 1,4 2,2 3 1.022 0.829 0.926 4 24 

5 1,2,4,5 
2,2, 

2,2 
1 2.445 6.628 4.536 16 16 

6 4,5 2,2 4 5.530 8.523 7.026 4 16 

7 4,5 2,2 2 6.715 9.661 8.188 4 12 

8 2,4,5 2,2,2 1 5.474 11.10 8.288 8 8 

9 4,5 2,2 1 13.998 18.83 16.41 4 4 
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Table 6 illustrates the results of the comparative analysis 

of the proposed model with the other models. The selected 

values of the performance indexes of the IG-FIS are 

marked in Tables 4 and 5. As can be seen, the proposed 

model outperforms several previous fuzzy models known 

in the literature. 

 

 

Table 6. Results of the selected models (NOx) 

Model PI E_PI 
No. of 

 rules 

Regression model 17.68 19.23  

Hybrid FS-FNNs [25] 2.806 5.164 30 

Hybrid FR-FNNs [26] 0.080 0.190 32 

Multi-FNN [27] 0.720 2.205 30 

Hybrid rule-based FNNs[28] 3.725 5.291 30 

Choi’s model [29] 0.012 0.067 18 

Sequential tuning 0.017 0.084 16 
Our model 

Simultaneous tuning 0.016 0.057 8 

 

 

4.3 Chaotic Mackey–Glass Time Series  

 

A chaotic time series is generated by the chaotic 

Mackey–Glass differential delay equation as 

 

 10

0.2 ( )
( ) 0.1 ( )

1 ( )

x t τ
x t x t

x t τ

• −
= −
+ −

 

 

The prediction of the future values of this series introduces 

a benchmark problem that has been used and reported by a 

number of researchers. From the Mackey–Glass time series 

x(t), we extracted 1000 input–output data pairs of vector 

format such as [x(t-30), x(t-24), x(t-18), x(t-12), x(t-6), x(t); 

x(t+6)] where t = 118–1117. To come up with a quantitative 

evaluation of the fuzzy model, we use the standard RMSE 

performance index as described by (12).  

We consider the Mackey–Glass data set, which is 

divided into two separate parts. The first 500 data pairs 

were used as the training data set for IG-based FIS, 

whereas the remaining 500 pairs were used as the testing 

data set for assessing the predictive performance.  

Figs. 11 and 12 depict the Pareto fronts generated using 

the MSSA in the case of the sequential and simultaneous 

tuning methods, respectively. The values of the 

performance index in the case of the sequential tuning 

method are presented in Table 7, whereas those in the case 

of the simultaneous tuning method are shown in Table 8. 

The identification error of the proposed model is 

compared with those of some other models, as shown in 

Table 9. From this table, the performance of the proposed 

model is evidently better than that of the other models in 

terms of approximation and prediction capabilities. 
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(a) Pareto front (three dimensions) 
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(b) Pareto front (two dimensions: H and E) 
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(c) Pareto front (two dimensions: N and E) 

Fig. 11. Pareto front produced by the MSSA in the case of 

the sequential tuning method (Mackey) 

 

Table 7. Optimal solutions using the sequential tuning 

method (Mackey)  

Objective values 
 

Selected input 

variables 

No.of 

MFs 
Type PI E_PI 

E H N 

1 1,3,4,6 2,2,2,2 3 0.000107 0.000156 0.000131 16 240 

2 1,3,4,6 2,2,2,2 4 0.000325 0.000333 0.000329 16 176 

3 2,3,4,5 2,2,2,2 2 0.00185 0.00181 0.00183 16 80 

4 3,4,5 2,2,2 4 0.00448 0.00448 0.00448 8 56 

5 3,4,5 2,2,2 2 0.00713 0.00686 0.00700 8 32 

6 4,6 2,2 3 0.0240 0.0238 0.0239 4 24 

7 4,6 2,2 4 0.0253 0.0253 0.0253 4 16 

8 4,6 2,2 2 0.0267 0.0269 0.0268 4 12 

9 3,4,5 2,2,2 1 0.0385 0.0377 0.0381 8 8 

10 2,4 2,2 1 0.0894 0.0883 0.0888 4 4 
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(b) Pareto front (two dimensions: H and E) 
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(c) Pareto front (two dimensions: N and E) 

Fig. 12. Pareto front produced by the MSSA in the case of 

the simultaneous tuning method (Mackey) 
 

Table 8. Optimal solutions using the simultaneous tuning 

method (Mackey)  

Objective values 
 

Selected input 

variables 

No.of 

MFs 
Type PI E_PI 

E H N 

1 1,2,3,4,6 2,2,2,2,2 3 0.0000184 0.000129 0.0000738 32 672 

2 1,3,4,5,6 2,2,2,2,2 4 0.0000143 0.000109 0.0000618 32 512 

3 1,3,4,6 2,2,2,2 3 0.000110 0.000142 0.000126 16 240 

4 1,3,4,6 2,2,2,2 4 0.000324 0.000324 0.000324 16 176 

5 2,3,4,5 2,2,2,2 2 0.00186 0.00176 0.00181 16 80 

6 3,4,5 2,2,2 4 0.00445 0.00431 0.00438 8 56 

7 1,4,6 2,2,2 2 0.00656 0.00643 0.00650 8 32 

8 3,4,5,6 2,2,2,2 1 0.0166 0.0160 0.0163 16 16 

9 4,6 2,2 3 0.0241 0.0237 0.0239 4 24 

10 4,6 2,2 4 0.0253 0.0253 0.0253 4 15 

11 4,6 2,2 2 0.0269 0.0269 0.0269 4 12 

12 1,3,5 2,2,2 1 0.0687 0.0674 0.0680 8 8 

13 3,5 2,2 1 0.0726 0.0714 0.0720 4 4 

Table 9. Results of the selected models (Mackey) 

Model PIt PI E_PI NDEI 
No.of 

rules 

Support vector regression 

model [30] 
 0.023 1.028 0.0246  

Multivariate adaptive regressi

on splines [30] 
 0.019 0.316 0.0389  

Standard neural networks  0.018 0.411 0.0705 15  

RBF neural networks  0.015 0.313 0.0172 15  

0.004    7 
Wang’s model [31] 

0.013    23 

ANFIS [32]  0.0016 0.0015 0.007 16 

FNN model [33]  0.014 0.009   

Incremental type multilevel 

FRS [34] 
 0.0240 0.0253  25 

Aggregated type multilevel F

RS [34] 
 0.0267 0.0256  36 

Hierarchical TS-FS[35]  0.0120 0.0129  28 

Sequential tuning  0.00011 0.00016 0.0013 16 Our  

model Simultaneous tuning  0.00011 0.00014 0.0007 16 

 

 

5. Concluding Remarks 

 

The current work contributes to research on the hybrid 

optimization of fuzzy inference systems in the following 

aspects. First, we proposed a multi-objective space search 

algorithm. The MSSA using a technique of non-dominated 

sort and crowding distance is designed on the basis of a 

space search algorithm. This is an optimization algorithm 

whose search method comes with the analysis of the 

solution space. Second, we introduced the fuzzy 

identification of fuzzy inference systems based on the 

MSSA and LSM. Instead of single objective optimization 

of the fuzzy inference system, the MSSA is used to conduct 

parametric optimization of the fuzzy model and to realize 

its structural optimization in the design of the IG-based 

fuzzy model. Numerical experiments using three well-

known data sets show that the model constructed using the 

MSSA has better performance compared with the fuzzy 

model reported in the literature. 
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