• Title/Summary/Keyword: Optimization analysis

Search Result 6,039, Processing Time 0.035 seconds

The Evaluation of Resolution Recovery Based Reconstruction Method, Astonish (Resolution Recovery 기반의 Astonish 영상 재구성 기법의 평가)

  • Seung, Jong-Min;Lee, Hyeong-Jin;Kim, Jin-Eui;Kim, Hyun-Joo;Kim, Joong-Hyun;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.58-64
    • /
    • 2011
  • Objective: The 3-dimensional reconstruction method with resolution recovery modeling has advantages of high spatial resolution and contrast because of its precise modeling of spatial blurring according to the distance from detector plane. The aim of this study was to evaluate one of the resolution recovery reconstruction methods (Astonish, Philips Medical), compare it to other iterative reconstructions, and verify its clinical usefulness. Materials and Methods: NEMA IEC PET body phantom and Flanges Jaszczak ECT phantom (Data Spectrum Corp., USA) studies were performed using Skylight SPECT (Philips) system under four different conditions; short or long (2 times of short) radius, and half or full (40 kcts/frame) acquisition counts. Astonish reconstruction method was compared with two other iterative reconstructions; MLEM and 3D-OSEM which vendor supplied. For quantitative analysis, the contrast ratios obtained from IEC phantom test were compared. Reconstruction parameters were determined by optimization study using graph of contrast ratio versus background variability. The qualitative comparison was performed with Jaszczak ECT phantom and human myocardial data. Results: The overall contrast ratio was higher with Astonish than the others. For the largest hot sphere of 37 mm diameter, Astonish showed about 27.1% and 17.4% higher contrast ratio than MLEM and 3D-OSEM, in short radius study. For long radius, Astonish showed about 40.5% and 32.6% higher contrast ratio than MLEM and 3D-OSEM. The effect of acquired counts was insignificant. In the qualitative studies with Jaszczak phantom and human myocardial data, Astonish showed the best image quality. Conclusion: In this study, we have found out that Astonish can provide more reliable clinical results by better image quality compared to other iterative reconstruction methods. Although further clinical studies are required, Astonish would be used in clinics with confidence for enhancement of images.

  • PDF

Evaluation of Approximate Exposure to Low-dose Ionizing Radiation from Medical Images using a Computed Radiography (CR) System (전산화 방사선촬영(CR) 시스템을 이용한 근사적 의료 피폭 선량 평가)

  • Yu, Minsun;Lee, Jaeseung;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.6
    • /
    • pp.455-464
    • /
    • 2012
  • This study suggested evaluation of approximately exposure to low-dose ionization radiation from medical images using a computed radiography (CR) system in standard X-ray examination and experimental model can compare diagnostic reference level (DRL) will suggest on optimization condition of guard about medical radiation of low dose space. Entrance surface dose (ESD) cross-measuring by standard dosimeter and optically stimulated luminescence dosimeters (OSLDs) in experiment condition about tube voltage and current of X-ray generator. Also, Hounsfield unit (HU) scale measured about each experiment condition in CR system and after character relationship table and graph tabulate about ESD and HU scale, approximately radiation dose about head, neck, thoracic, abdomen, and pelvis draw a measurement. In result measuring head, neck, thoracic, abdomen, and pelvis, average of ESD is 2.10, 2.01, 1.13, 2.97, and 1.95 mGy, respectively. HU scale is $3,276{\pm}3.72$, $3,217{\pm}2.93$, $2,768{\pm}3.13$, $3,782{\pm}5.19$, and $2,318{\pm}4.64$, respectively, in CR image. At this moment, using characteristic relationship table and graph, ESD measured approximately 2.16, 2.06, 1.19, 3.05, and 2.07 mGy, respectively. Average error of measuring value and ESD measured approximately smaller than 3%, this have credibility cover all the bases radiology area of measurement 5%. In its final analysis, this study suggest new experimental model approximately can assess radiation dose of patient in standard X-ray examination and can apply to CR examination, digital radiography and even film-cassette system.

Measurement of Effective Half-life Using Dual Time I-131 Whole Body Scan in Patients with Differentiated Thyroid Cancer Treated by High Dose Therapy (고용량 방사성옥소 치료를 받은 갑상선분화암 환자에서 Dual Time I-131 Whole Body Scan을 이용한 유효반감기의 측정)

  • Yoon, Jae Sik;Lee, Jae Gon;Lee, Ki Hyun;Lim, Kwang Seok;Choi, Hak Ki;Lee, Sang Mi
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.98-103
    • /
    • 2014
  • Purpose: The effective half life of I-131 is useful to calculate radiation dose, period of hospitalization, and exposure dose of surrounding people from patient. However, it is difficult to measure. This study estimates the effective half life in whole body and thyroid in using of value of residual radioactivity obtained from the early and delay images of Dual time I-131 whole body scan. Also, the correlations between the effective half life and serum creatinine, GFR, and administration dose were investigated in this study. Materials and Methods: The targets were 50 patients administration high dose of I-131 from February to August in 2013, having normal range of serum creatinine and over $30{\mu}IU/mL$ of TSH levels. After administration radioactive I-131, the early scan in the 3rd day and the delay scan in the 5-6th days were performed. To measure the residual radioactivity in the whole body and thyroid, ROI was set and then background radioactivity was corrected to estimate. The effective half life was estimated by calculating the ratio of measured values between the early and delay images. To compare the effective half lives of the whole body and thyroid, it was analyzed by Independent t-test, and each correlation of the effective half life, GFR, serum creatinine, and the dose of administration were analyzed by calculating the pearson's correlation coefficient. All of the analysis were determined to be statistically significant when P<0.05. Results: The effective half life of the whole body was $17.06{\pm}5.50$ hours and of the thyroid was $17.22{\pm}5.41$ hours. The two effective half life did not show significant difference (P=0.887). As the value of GFR was increased, the effective half life of whole body (r=-0.407, P=0.003) and of thyroid (r=-0.473, P=0.001) were significantly decreased; as the value of serum creatinine was increased, the effective half life of whole body (r=0.309, P=0.029) and of thyroid (r=0.371, P=0.008) were significantly increased. In the administration dose, effective half life did not have correlations. Conclusion: The effective half life of I-131 of patients treated for their thyroids were estimated only by using the images of Dual time I-131 whole body scan. Also, the correlations with the effective life, GFR, and serum creatinine were examined. This study might be utilized for a study on optimization for the period of hospitalization of patients treated by high dose of I-131 and on evaluation for internal absorbed dose of MIRD schema in application of the effective half life.

  • PDF

Optimization of Interesterification Reaction for the Continuous Production of trans-Free Fat in a Packed Bed Enzyme Bioreactor with Immobilized Lipase (고정화 리파제를 이용한 충진형 효소생물반응기 내에서의 무-트랜스 유지 연속 생산을 위한 에스테르 교환 반응의 최적화)

  • Kim, Sang-Woo;Park, Kyung-Min;Ha, Jae-Uk;Lee, Jae-Hwan;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.173-178
    • /
    • 2009
  • Epidemiological studies showed that high trans-fat consumption is closely associated with getting the risks of cardiovascular disease. The objective of this study was to produce trans-free fat through lipase-catalyzed interesterification, as a substitute for the cream margarine commonly used in industry. Optimum conditions for interesterification in a packed bed enzyme bioreactor (PBEB) were determined using response surface methodology (RSM) based on central composite design. Three kinds of reaction variables were chosen, such as substrate flow rate (0.4-1.2 mL/min), reaction temperature (60-70$^{\circ}C$), and ratio of fully hydrogenated canola oil (FHCO, 35-45%) to evaluate their effects on the degree of interesterification. Optimum conditions from the standpoint of solid fat content (SFC) were found to be as follows: 0.4 mL/min flow rate, 64.7$^{\circ}C$ reaction temperate, and 42.8% (w/w) ratio of FHCO, respectively. The half-life of immobilized lipase in PBEB with two stages at 60$^{\circ}C$ ($1^{st}$ stage) and 55$^{\circ}C$ ($2^{nd}$ stage) was about more than 30 days as estimated by extrapolating the incubation time course of tristearoyl glycerol (TS) conversion, whereas the half-life of the enzyme in PBEB with single stage at 65$^{\circ}C$ was only about 15 days. Finally, the results from SFC analysis suggest that trans-free fat produced in this study seems to be a suitable substitute for the cream margarine commonly used in industry.

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.

Optimization of microwave-assisted extraction process for blue honeysuckle (Lonicera coerulea L.) using response surface methodology (반응표면분석법을 이용한 댕댕이 기능성성분의 마이크로웨이브추출조건 최적화)

  • Park, Daehee;Lee, Jae-Jun;Park, Jongjin;Park, Sanghwan;Lee, Wonyoung
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.623-630
    • /
    • 2017
  • Functional compounds including flavonoids, anthocyanins, polyphneols and antioxidants were extracted from blue honeysuckle (Lonicera caerulea L.) using highly efficient microwave-assisted extraction. And extraction process was modeled and optimized according to response surface methodology (RSM). The independent variables ($X_n$) were ethanol concentration ($X_1$: 0, 25, 50, 75, 100%), irradiation time ($X_2$: 1, 3, 5, 7, 9 min), and microwave power ($X_3$: 60, 120, 180, 240, 300 W). Dependent variables ($Y_n$) were total flavonoid contents ($Y_1$), total anthocyanin contents ($Y_2$), total polyphenol contents ($Y_3$) and antioxidant activity ($Y_4$). Four-dimensional response surface plots were generated based on the fitted second-order polynomial models to get optimal conditions. Estimated optimal conditions for 4 responses were ethanol concentration of 54-72%, irradiation time of 7.1-7.6 min, and microwave power of 243-251 W. Ridge analysis predicted the maximal responses of total flavonoid content, total anthocyanin content, total polyphenol content and antioxidant activity were 38.00 mg RE/g, 6.80 mg CGE/g, 14.90 mg GAE/g, 89.10%, respectively. Verification experiment was carried out at predicted optimal conditions and experimental values for total flavonoid content, total anthocyanin content, total polyphenol content and antioxidant activity were 38.10 mg RE/g, 6.72 mg CGE/g, 14.91 mg GAE/g and 89.13%, respectively. No significant difference was observed between predicted and experimental values, indicating good fitness of fitted model and successful application of RSM.

Variation of Inflow Density Currents with Different Flood Magnitude in Daecheong Reservoir (홍수 규모별 대청호에 유입하는 하천 밀도류의 특성 변화)

  • Yoon, Sung-Wan;Chung, Se-Woong;Choi, Jung-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1219-1230
    • /
    • 2008
  • Stream inflows induced by flood runoffs have a higher density than the ambient reservoir water because of a lower water temperature and elevated suspended sediment(SS) concentration. As the propagation of density currents that formed by density difference between inflow and ambient water affects reservoir water quality and ecosystem, an understanding of reservoir density current is essential for an optimization of filed monitoring, analysis and forecast of SS and nutrient transport, and their proper management and control. This study was aimed to quantify the characteristics of inflow density current including plunge depth($d_p$) and distance($X_p$), separation depth($d_s$), interflow thickness($h_i$), arrival time to dam($t_a$), reduction ratio(${\beta}$) of SS contained stream inflow for different flood magnitude in Daecheong Reservoir with a validated two-dimensional(2D) numerical model. 10 different flood scenarios corresponding to inflow densimetric Froude number($Fr_i$) range from 0.920 to 9.205 were set up based on the hydrograph obtained from June 13 to July 3, 2004. A fully developed stratification condition was assumed as an initial water temperature profile. Higher $Fr_i$(inertia-to-buoyancy ratio) resulted in a greater $d_p,\;X_p,\;d_s,\;h_i$, and faster propagation of interflow, while the effect of reservoir geometry on these characteristics was significant. The Hebbert equation that estimates $d_p$ assuming steady-state flow condition with triangular cross section substantially over-estimated the $d_p$ because it does not consider the spatial variation of reservoir geometry and water surface changes during flood events. The ${\beta}$ values between inflow and dam sites were decreased as $Fr_i$ increased, but reversed after $Fr_i$>9.0 because of turbulent mixing effect. The results provides a practical and effective prediction measures for reservoir operators to first capture the behavior of turbidity inflow.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

Optimization of Processing Conditions for the Production of Puffed Rice (팽화미 제조 공정조건의 최적화)

  • Cheon, Hee Soon;Cho, Won Il;Jhin, Changho;Back, Kyeong Hwan;Ryu, Kyung Heon;Lim, Su Youn;Chung, Myong Soo;Choi, Jun Bong;Lim, Taehwan;Hwang, Keum Taek
    • Culinary science and hospitality research
    • /
    • v.21 no.1
    • /
    • pp.77-89
    • /
    • 2015
  • The objective of this study was to optimize processing conditions for the production of an instant puffed rice product using response surface methodology (RSM) and contour analysis. Sensory and texture qualities, and physical properties of the puffed rice were analyzed with various processing conditions related to drying and puffing temperature, and moisture content. Preference, color intensity, cohesiveness, rehydration ratio, density and lightness of the puffed rice product significantly varied depending on the processing conditions. The responses showed high $R^2$ values (0.623, 0.852, 0.735, 0.688, and 0.790) and lack-of-fit. Rehydration ratio was found to have a negative correlation with density in the condition of drying and puffing temperature. Lightness and preference scores of the puffed rice increased as the moisture content increased. According to RSM, the preference scores were very highly related to the moisture content, and the optimum processing conditions of the puffed rice product were at $40^{\circ}C$ of drying temperature, with 11.0% of moisture content, and at $232.7^{\circ}C$ of puffing temperature.

Design of Thermo-optic Switch with Low Power Consumption by Electrode Optimization (전극 구조의 최적화를 통한 저전력 열광학 스위치 설계)

  • Choi, Chul-Hyun;Kong, Chang-Kyeng;Lee, Min-Woo;Sung, Jun-Ho;Lee, Seung-Gol;Park, Se-Geun;Lee, El-Hang;O, Beom-Hoan
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.266-271
    • /
    • 2009
  • We designed a thermo-optic switch based on a directional coupler with not only a high extinction ratio but also significantly low power consumption. The switch operates by using the thermo-optic effect of the polymer which the refractive index changes by heating the electrode. If the electrode is not powered (OFF), the input light will be coupled completely to the other waveguide. When the electrode is powered at a certain level (ON), input light launched into the input waveguide will remain in that waveguide due to the lower index adjusted in the other waveguide. The switch based on the directional coupler was designed using the generalized extinction ratio curve and the lateral shift of the input waveguide. The coupling length is 1,610 ${\mu}m$ and the extinction ratios are -28 and -30 dB for ON and OFF states, respectively. The electrode structures were optimized by thermal analysis. The transported heat into the waveguide is increased, as the electrode width (w) is increased and the center distance between the electrode and the waveguide (d) is decreased. Also, because the heat generated in the electrode affects the other waveguide, the temperature difference between two waveguides is varied as the given w and d. There are specific conditions which have the maximum of the temperature difference. That of the temperature difference is increased as the width and the temperature of the electrode are increased. Especially, when the switch is designed using the condition with the maximum of the temperature difference for switching, the temperature of the electrode can be decreased. We expect this condition will be the novel method for the reduction of the power consumption in a thermo-optic switch.