Browse > Article
http://dx.doi.org/10.5806/AST.2022.35.6.256

Optimization for I-129 analytical method of radioactive waste sample using a high-temperature combustion tube furnace  

Chae-yeon, Lee (Korea Atomic Energy Research Institute)
Jong-Myoung, Lim (Korea Atomic Energy Research Institute)
Hyuncheol, Kim (Korea Atomic Energy Research Institute)
Ji-Young, Park (Korea Atomic Energy Research Institute)
Jin-Hong, Lee (Chungnam National University)
Publication Information
Analytical Science and Technology / v.35, no.6, 2022 , pp. 256-266 More about this Journal
Abstract
It is important to determine the concentration of long-lived radionuclides (e.g., 129I) in nuclear waste to ensure safety when handling it. To analyze nuclides in a solid sample (e.g., concrete and soil), it is essential to effectively separate and purify the nuclides of interest in the sample. This study reports the comprehensive efforts made to validate the analytical procedure for 129I detection in solid samples, using a high-temperature combustion furnace. 129I volatilized from the sample collected in 0.01 M HNO3 solution with a reducing agent (e.g., NaHSO3) and was rapidly measured by ICP-MS. Analytical conditions, such as pyrolysis temperature and types of mobile phase gas, catalyst, and trapping solution, were optimized to obtain a high recovery rate of spiked 129I. Finally, the optimized method was applied for the simultaneous analysis of other volatile radionuclides, such as 3H and 14C. The performance test results for the optimized method confirmed that the LSC (for 3H and 14C) and ICP-MS (for 129I) measurements, with the separation of volatile nuclides using a high-temperature combustion furnace, were reliable.
Keywords
I-129; Pyrolysis; Tube-furnace; Method validation; Simultaneous determination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Fujiwara, K. Kawabata, J. Suzuki, and O. Shikino, J. Anal. Atom. Spectrom., 26(12), 2528-2533 (2011).    DOI
2 X. Hou and Y. Wang, J. Anal. Atom. Spectrom., 31(6), 1298-1310 (2016).    DOI
3 Nuclear Safety Committee, Regulations on radioactive waste classification and self-disposal standards, NSSC Notice No. 2020-6 (2020). 
4 Nuclear Safety and Security Commission, General Acceptance Criteria for Low and Intermediate Level Radioactive Waste, NSSC Notice No. 2021-26 (2021). 
5 G. Yang, H. Tazoe, and M. Yamada, Anal. Chim. Acta., 1008, 66-73 (2018).    DOI
6 K. Julshamn, L. Dahl, and K. Eckhoff, J. AOAC Int., 84(6), 1976-1983 (2001).    DOI
7 A. L. H. Muller, P. A. Mello, M. F. Mesko, F. A. Duarte, V. L. Dressler, E. I. Muller, and E. M. M. Flores, J. Anal. Atom. Spectrom., 27(11), 1889-1894 (2012).    DOI
8 Y. Muramatsu, H. Matsuzaki, C. Toyama and T. Ohno, J. Environ. Radioact., 139, 344-350 (2015).    DOI
9 Y. Muramatsu, Y. Takada, H. Matsuzaki, and S. Yoshida, Quat. Geochronol., 3(3), 291-297 (2008).    DOI
10 T. Ohno, Y. Muramastsu, Y. Shikamori, C. Toyama, N. Okabe, and H. Matsuzaki, J. Anal. Atom. Spectrom., 28(8), 1283-1287 (2013).    DOI
11 J. Y. Chai and Y. Muramatsu, Geostan. Geoanal. Res., 31(2), 143-150 (2007).    DOI
12 T. C. Oliveira, R. P. G. Monteiro, G. F. Kastner, and A. H. Oliveira, Braz. J. Radiat. Sci., 9(1A), 2-8 (2021). 
13 J. H. Chao, C. L. Tseng, C. J. Lee, C. C. Hsia, and S. P. Teng, Appl. Radiation Isotopes, 51(2), 137-143 (1999).    DOI
14 B. Remenec, S. Dulanska, B. Horvathova and E. Matel, J. Radioanal. Nucl. Chem., 311, 1649-1655 (2017).    DOI
15 P. Cassette, J. Bouchard, and B. Chauvenet, Nucl. Instrum. Meth. A, 339(1-2), 339-342 (1994).    DOI
16 A. Schmidt, C. Schnabel, J. Handl, D. Jakob, R. Michel, H.-A. Synal, J. M. Lopez, and M. Suter, Sci. Total Environ., 223(2-3), 131-156 (1998).    DOI
17 S. Szidat, A. Schmidt, J. Handl, D. Jakob, R. Michel, H. Synal, Ch. Schnabel, M. Suter, and J. M. LopezGutierrez, Kerntechnik, 65, 160-167 (2000).    DOI
18 X. Hou, H. Dalhgaard, B. Rietz, U. Jacobsen, S. P. Nielsen, and A. Aarkrog, Analyst, 124(7), 1109-1114 (1999).    DOI
19 N. Buraglio, A. Aldahan, and G. Possnert, Nucl. Instrum. Meth. B, 161-163, 240-244 (2000).    DOI
20 B. Michalke, P. Schramel, and H. Witte, Biol. Trace Elem. Res., 78, 81-91 (2000).    DOI
21 M. Haldimann, B. Zimmerli, C. Als, and H. Gerber, Clin. Chem., 44(4), 817-824 (1998).    DOI
22 D. S. Hardisty, T. J. Horner, S. D. Wankel, J. Blusztajn, and S. G. Nielsen, Chem. Geol., 532, 119360 (2020). 
23 K. Li, E. Vogel, and U. Krahenbuhl, Radiochim. Acta., 97(8), 453-458 (2009). 
24 X. Hou, Appl. Radiation Isotopes, 62(6), 871-882 (2005).    DOI
25 C. P. Shelor and P. K. Dasgupta, Anal. Chim. Acta., 702(1), 16-36 (2001).    DOI
26 T. Taflik, F. A. Duarte, E. L. M. Flores, F. G. Antes, J. N. G. Paniz, E. M. M. Flores, and V. L. Dressler, J. Brazil. Chem. Soc., 23(3), 488-495 (2012).    DOI
27 J. M. Lim, M. J. Kang, K. H. Chung, C. J. Kim, and G. S. Choi, J. Radioanal. Nucl. Chem., 303, 1111-1115 (2015).   DOI