• Title/Summary/Keyword: Optimality modeling

Search Result 21, Processing Time 0.035 seconds

Optimality Modeling in Human Evolutionary Behavioral Science

  • Jean, Joong-Hwan
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.177-181
    • /
    • 2008
  • Recently, the evolutionary study of human psychology and behavior has undergone rapid growth, diversifying into a few distinct sub-disciplines. One fundamental issue over which researchers in Human Behavioral Ecology and Evolutionary Psychology (EP) have different views is the role of formal optimality modeling for making hypotheses and deriving predictions about human adaptations. The study of EP typically rests on informal inferences and rarely uses optimality modeling, a strategy which human behavioral ecologists have severely criticized. Here I argue that EP researchers have every reason to make extensive use of optimality modeling as its research method. I show that optimality modeling can play an integral role in identifying the functional organization of human psychological adaptations.

Augmented D-Optimal Design for Effective Response Surface Modeling and Optimization

  • Kim, Min-Soo;Hong, Kyung-Jin;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.203-210
    • /
    • 2002
  • For effective response surface modeling during sequential approximate optimization (SAO), the normalized and the augmented D-optimality criteria are presented. The normalized D-optimality criterion uses the normalized Fisher information matrix by its diagonal terms in order to obtain a balance among the linear-order and higher-order terms. Then, it is augmented to directly include other experimental designs or the pre-sampled designs. This augmentation enables the trust region managed sequential approximate optimization to directly use the pre-sampled designs in the overlapped trust regions in constructing the new response surface models. In order to show the effectiveness of the normalized and the augmented D-optimality criteria, following two comparisons are performed. First, the information surface of the normalized D-optimal design is compared with those of the original D-optimal design. Second, a trust-region managed sequential approximate optimizer having three D-optimal designs is developed and three design problems are solved. These comparisons show that the normalized D-optimal design gives more rotatable designs than the original D-optimal design, and the augmented D-optimal design can reduce the number of analyses by 30% - 40% than the original D-optimal design.

Integration of Optimality, Neural Networks, and Physiology for Field Studies of the Evolution of Visually-elicited Escape Behaviors of Orthoptera: A Minireview and Prospects

  • Shin, Hong-Sup;Jablonski, Piotr G.
    • Journal of Ecology and Environment
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • Sensing the approach of a predator is critical to the survival of prey, especially when the prey has no choice but to escape at a precisely timed moment. Escape behavior has been approached from both proximate and ultimate perspectives. On the proximate level, empirical research about electrophysiological mechanisms for detecting predators has focused on vision, an important modality that helps prey to sense approaching danger. Studies of looming-sensitive neurons in locusts are a good example of how the selective sensitivity of nervous systems towards specific targets, especially approaching objects, has been understood and realistically modeled in software and robotic systems. On the ultimate level, general optimality models have provided an evolutionary framework by considering costs and benefits of visually elicited escape responses. A recent paper showed how neural network models can be used to understand the evolution of visually mediated antipredatory behaviors. We discuss this new trend towards integration of these relatively disparate approaches, the proximate and the ultimate perspectives, for understanding of the evolution of behavior of predators and prey. Focusing on one of the best-studied escape pathway models, the Orthopteran LGMD/DCMD pathway, we discuss how ultimate-level optimality modeling can be integrated with proximate-level studies of escape behaviors in animals.

Improving Efficiency of Timeslot Assignment for Non-realtime Data in a DVB-RCS Return Link: Modeling and Algorithm

  • Lee, Ki-Dong;Cho, Yong-Hoon;Lee, Ho-Jin;Oh, Deock-Gil
    • ETRI Journal
    • /
    • v.25 no.4
    • /
    • pp.211-218
    • /
    • 2003
  • This paper presents a dynamic resource allocation algorithm with multi-frequency time-division multiple access for the return link of interactive satellite multimedia networks such as digital video broadcasting return channel via satellite systems. The proposed timeslot assignment algorithm, called the very efficient dynamic timeslot assignment (VEDTA) algorithm, gives an optimal assignment plan within a very short period. The optimality and computational efficiency of this algorithm demonstrate that it will be useful in field applications.

  • PDF

Economic Second-Order Modeling Using Modified Notz Design (수정된 Notz계획을 이용한 2차모형의 경제적 추정)

  • Yun, Tae-Hong;Byun, Jai-Hyun
    • Journal of Korean Society for Quality Management
    • /
    • v.40 no.4
    • /
    • pp.431-440
    • /
    • 2012
  • Purpose: In this paper we propose modified Notz designs which are useful to experimenters who want to adopt the sequential experimentation strategy and to estimate second-order regression model with as few experimental points as possible. Methods: We first present the design matrices and design points in two or three dimensional spaces for such small sized second-order designs as small composite, hybrid, and Notz designs. Modified Notz designs are proposed and compared with some response surface designs in terms of the total number of experimental points, the estimation capability criteria such as D- and A-optimality. Results: When sequential experimentation is necessary, the modified Notz designs are recommendable. Conclusion: The result of this paper will be beneficial to experimenters who need to do experiments more efficiently, especially for those who want to reduce the time of experimentation as much as possible to develop cutting-edge products.

Optimization of Triple Response Systems by Using the Dual Response Approach and the Hooke-Jeeves Search Method

  • Fan, Shu-Kai S.;Huang, Chia-Fen;Chang, Ko-Wei;Chuang, Yu-Chiang
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.1
    • /
    • pp.10-19
    • /
    • 2010
  • This paper presents an extended computing procedure for the global optimization of the triple response system (TRS) where the response functions are nonconvex (nonconcave) quadratics and the input factors satisfy a radial region of interest. The TRS arising from response surface modeling can be approximated using a nonlinear mathematical program involving one primary (objective) function and two secondary (constraints) functions. An optimization algorithm named triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the nondegenerate TRS. In TRSALG, the Lagrange multipliers of target (secondary) functions are computed by using the Hooke-Jeeves search method, and the Lagrange multiplier of the radial constraint is located by using the trust region (TR) method at the same time. To ensure global optimality that can be attained by TRSALG, included is the means for detecting the degenerate case. In the field of numerical optimization, as the family of TR approach always exhibits excellent mathematical properties during optimization steps, thus the proposed algorithm can guarantee the global optimal solution where the optimality conditions are satisfied for the nondegenerate TRS. The computing procedure is illustrated in terms of examples found in the quality literature where the comparison results with a gradient-based method are used to calibrate TRSALG.

Layout Optimization of FPSO Topside High Pressure Equipment Considering Fire Accidents with Wind Direction (풍향에 따른 화재영향을 고려한 FPSO 상부구조물 고압가스 모듈내부의 장비 최적배치 연구)

  • Bae, Jeong-Hoon;Jeong, Yeon-Uk;Shin, Sung-Chul;Kim, Soo-Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.404-410
    • /
    • 2014
  • The purpose of this study was to find the optimal arrangement of FPSO equipment in a module while considering the economic value and fire risk. We estimated the economic value using the pipe connections and pump installation cost in an HP (high pressure) gas compression module. The equipment risks were also analyzed using fire scenarios based on historical data. To consider the wind effect during a fire accident, fuzzy modeling was applied to improve the accuracy of the analysis. The objective functions consisted of the economic value and fire risk, and the constraints were the equipment maintenance and weight balance of the module. We generated a Pareto-optimal front group using a multi-objective GA (genetic algorithm) and suggested an equipment arrangement method that included the opinions of the designer.

Applying Intelligent Agent and Petri Net Modeling Technology to ERT Maintenance (지능형 에이전트와 페트리네트 모형화 기술을 활용한 ERP 유지보수 방법론)

  • 권오병;이재준
    • Journal of Information Technology Application
    • /
    • v.2 no.1
    • /
    • pp.113-137
    • /
    • 2000
  • Even though there is no doubt that ERP(Enterprise Resource Planing) system is a prevailing solution for integrating corporate information, many companies still hesitate adopting ERP system because of a great deal of cost including maintenance cost. In special, unless consulting knowledge that is infused into process reengineering phase or adequately embedded in customized ERP system is upgraded on time, then we cannot guarantee the optimality of system performance. Hence, this paper aims to construct an ERP system that adapts itself to environmental changes that are issued by database and users. To do so, we adopt intelligent agent technology and Petri net theory. The agents autonomously cooperate each other to investigate databases and to find any exceptional changes and analyze how the changes will affect ERP performance. The dynamics of the agents are represented as Petri nets. The newly proposed ERP system is to make corresponding BPR processes maintain optimality. To show the feasibility of the proposed ERP maintenance system, logistics component is described as an illustrative example.

  • PDF

The Modeling of the Optimal Data Format for JPEG2000 CODEC on the Fixed Compression Ratio (고정 압축률에서의 JPEG2000 코덱을 위한 최적의 데이터 형식 모델링)

  • Kang, Chang-Soo;Seo, Choon-Weon
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1257-1260
    • /
    • 2005
  • This paper is related to optimization in the image data format, which can make a great effect in performance of data compression and is based on the wavelet transform and JPEG2000. This paper established a criterion to decide the data format to be used in wavelet transform, which is on the bases of the data errors in frequency transform and quantization. This criterion has been used to extract the optimal data format experimentally. The result were (1, 9) of 10-bit fixed-point format for filter coefficients and (9, 7) of 16-bit fixed-point data format for wavelet coefficients and their optimality was confirmed.

  • PDF

Survey on IEEE 802.11 DCF Game Theoretic Approaches (IEEE 802.11 DCF에서의 게임 이론적 접근방법 소개)

  • Choi, Byeong-Cheol;Kim, Jung-Nyeo;Ryu, Jae-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.240-242
    • /
    • 2007
  • The game theoretic analysis in wireless networks can be classified into the jamming game of the physical layer, the multiple access game of the medium access layer, the forwarder's dilemma and joint packet forwarding game of the network layer, and etc. In this paper, the game theoretic analysis about the multiple access game that selfish nodes exist in the IEEE 802.11 DCF(Distributed Coordination Function) wireless networks is addressed. In this' wireless networks, the modeling of the CSMA/CA protocol based DCF, the utility or payoff function calculation of the game, the system optimization (using optimization theory or convex optimization), and selection of Pareto-optimality and Nash Equilibrium in game strategies are the important elements for analyzing how nodes are operated in the steady state of system. Finally, the main issues about the game theory in the wireless network are introduced.

  • PDF