• 제목/요약/키워드: Optimal servo control

검색결과 174건 처리시간 0.027초

교류서보모터의 시정수에 의한 속도 제어특성 (Control Characteristics of Speed Using Time Constant on the AC Servo Motor)

  • 김평호;박인준;정병호;오금곤;백형래
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.347-351
    • /
    • 1998
  • This paper describes the controller for the improving speed control the AC servo motor. The microprocessor provides an output to the difference in command. The servo system improves the characteristics of speed control. When the motor is running at the same speed as set by the reference signal, the speed encoder also provides a signal of the same frequency. Thus, the microprocessor controlled digital techniques enable to realize the flexible performance and control which was possible with time constant. We can know that optimal speed of machining center is 75msec in 30000mm/min and actually, 75msec is using on machining center. Finally experimental results prove excellent performance of this control system. This can be reduced error with more exact measure of actual speed. The system can be adaptable to CNC machine.

  • PDF

건설차량 주행용 동력 전달계의 실시간 시뮬레이터에 관한 연구 (A Study on Real Simulator of Running Power Train for Construction Vehicle)

  • 이일영;김진원;윤소남;양경욱
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.90-105
    • /
    • 1996
  • A real tine simulator of running power train for a construction vehicle was developed. The simulator mainly consists of following two parts; (1) running power train part and (2) running load generation part. An optimal servo control algorithm was adopted for designing the multi-variable digital control system of the simulator. By experiments investigating response characteristics under step-wise variation or pre-determined scenario of target vehicle velocity and target load torque, it was verified that the simulator could reproduce physical situations at and actual vehicle with excellent similarity.

  • PDF

열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어 (Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills)

  • 황이철;박철재
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF

DSP를 이용한 편로드 유압서보시스템의 $H_{\infty}$ 최적제어 ([ $H_{\infty}$ ] Optimal Control for Single-Rod Hydraulic Servo-System with DSP)

  • 정규홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.515-520
    • /
    • 2001
  • Due to the high power to weight ratio and fast response under heavy load, the hydraulic systems are still applied to the development of many industrial facilities such as heavy duty construction vehicles, aerospace/military weapon actuating systems and motion simulators. Unlike the other actuators, single-rod hydraulic cylinder exhibits a lot different dynamic characteristics between the extending and retracting stroke because of the difference in pressure acting areas. In this research, in order to overcome this nonlinear feature, $H_{\infty}$ optimal controller was designed and implemented with DSP board that was specifically developed for the experiment. From the experimental result, we could confirm that the overall performance of single-rod hydraulic servo system is similar with the results as we expected in the design stage.

  • PDF

Autopilot Design of an Autonomous Underwater Vehicle Using Robust Control

  • Jung, Keum-Young;Kim, In-Soo;Yang, Seung-Yun;Lee, Man-Hyung
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.264-269
    • /
    • 2002
  • In this paper, Η$_{\infty}$ depth and course controller of an AUV(Autonomous Underwater Vehicle) using Η$_{\infty}$ servo control is proposed. The Η$_{\infty}$ servo problem is formulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the Η$_{\infty}$ servo problem is as fellows: first, this problem is modified as an Η$_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The Η$_{\infty}$ depth and course controller are designed to satisfy with the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(wave force, wave moment, tide). The performances of the designed controllers are evaluated with computer simulations, and finally these simulation results show the usefulness and application of the proposed Η$_{\infty}$ depth and course control system.

Derivative State Constrained optimal H2 Control for Quadruple-tank process

  • Kim, Jong-Hae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.44.6-44
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Dynamical of the quadruple-tank process $\textbullet$ H2x Integral Servo Problems $\textbullet$ Verification via Simulation $\textbullet$ Conclusions

  • PDF

무인 수중운동체의 $H_{\infty}$ 심도 및 방향 제어기 설계 ($H_{\infty}$ Depth and Course Controllers Design for Autonomous Underwater Vehicles)

  • 양승윤
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2980-2988
    • /
    • 2000
  • In this paper, H(sub)$\infty$ depth and course controllers of autonomous underwater vehicles using H(sub)$\infty$ servo control are proposed. An H(sub)$\infty$ servo problem is foumulated to design the controllers satisfying a robust tracking property with modeling errors and disturbances. The solution of the H(sub)$\infty$servo problem is as follows; firest, this problem is modified as an H(sub)$\infty$ control problem for the generalized plant that includes a reference input mode, and than a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach, The H(sub)$\infty$depth and course controllers are designed to satisfy the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under disturbances(was force, wave moment, tide). The performances(the robustness to the uncertainties, depth and course tracking properties) of the designed controlled are evaluated with computer simulations, and finally these simulation results show the usefulness and applicability of the propose H(sub)$\infty$ depth and course control systems.

3-Axis Gyro Sensor based on Servo Motion Control 장치의 성능평가기준 및 시험규격개발 (Development and Evaluation of 3-Axis Gyro Sensor based Servo motion control)

  • 이원부;장철순;김정국;박수홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2009년도 춘계학술대회
    • /
    • pp.627-630
    • /
    • 2009
  • 해상용 Multi Sensor Surveillance System은 다양한 기술의 복합체로서 본 과제에서 개발하고자하는 Gyro Sensor based Servo Motion Control 알고리즘은 선박의 6자유도운동을 분석하여 그에 대응할 수 있는 Motion Control 동요안정화제어장치를 개발하는 것이며, Nano Driving Precision Pan-Tilt/Gimbal System은 초정밀 초고속으로 감시용 디바이스를 적시에 정확한 동작을 수행하게 해주는 필수적인 장비이다. 최종적으로 개발하고자 하는 분야는 해상용 Nano Driving Multi Sensor Surveillance System 중 Nano Driving Precision Pan-Tilt/Gimbal의 최적설계 및 제작, 3-axis Gyro Sensor based Servo Motion Control 알고리즘 개발, 영상추적 Video Tracking Software 및 Hardware의 개발 및 각 세부주관에서 개발한 각각의 장비를 하나의 시스템으로 통합하는 시스템 Integration 및 시험인증으로 하나의 시스템을 완성 하였다.

  • PDF

Positioning Servo System의 Time Optimal Control에 관한 연구

  • 송창섭;이봉진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1991년도 추계학술대회 논문집
    • /
    • pp.165-170
    • /
    • 1991
  • 최근의 컴퓨터, 자동화 기기, 로봇 등으로 대표되는 산업용기기나 정밀전자 부품제조 기기등의 진보는 눈부신 바가 있으며 그들의 구동 부분에 대한 정밀도가 높은 위치결정, 고속 응답성, 소형화 등의 요구가 점차 높아져 가고 있다. 그러므로 고속응답성을 이루기 위하여서는 플랜트의 상태 방정식을 구조조건으로 하고 주어진 성능지수를 최소화하는 최적제어이론에 기반을 둔 Rang-Bang control를 positioning servo system에 적용시켜야 한다.(중략)

  • PDF

이산형 칼만 필터를 이용한 서보 시스템의 추정자 설계 (Design of an Estimator for Servo Systems using Discrete Kalman Filter)

  • 신두진;허욱열
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권8호
    • /
    • pp.996-1003
    • /
    • 1999
  • This paper propose a position-speed controller with an estimator which can estimate states and disturbance. The overall control system consists of two parts: the position-speed controller and an estimator. The Kalman filter applied as state-feedback controller is an optimal state estimator applied to a dynamic system that involves random perturbations and gives a linear, unbiased and minimum error variance recursive algorithm to optimally estimate the unknown state. Therefore, we consider the error problem about the servo system modeling and the measurement noise as a stochastic system and implement a optimal state observer, and enhance the estimate performance of position and speed using that. Using two-degree-of freedom(TDOF) conception, we design the command input response and the closed loop characteristics independently. The servo system is to improve the closed loop characteristics without affecting the command imput response. The characteristics of the closed loop system is improved by suppressing disturbance torque effectively with the disturbance observer using a inverse-transfer matrix. Therefore, the performance of overall position-speed controller is enhanced. Finally, the performance of the proposed controller is exemplified by some simulations and by applying the real servo system.

  • PDF