• 제목/요약/키워드: Optimal servo control

검색결과 174건 처리시간 0.029초

강인 내부 보상기를 이용한 새로운 강인 제어기 설계 (A Novel Robust Controller Design using Robust Internal-loop Compensator)

  • 최현택;서일홍
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권8호
    • /
    • pp.987-995
    • /
    • 1999
  • A new robust controller design methodology for single-input single-output systems is proposed, where the proposed controller consists of a conventional or optimal servo controller at the outer loop as well as the robust internal-loop compensator(RIC) to eliminate the model uncertainty and external disturbance. It is shown that RIC with finite gain can make actual systems be nominal models within a prespecified error bound. And, it is also shown that RIC-based system is robustly stable regardless of input saturation. Several numerical examples are illustrated to show validities of the proposed robust controller.

  • PDF

CD-ROM 드라이브 피딩 시스템의 진동해석 (Vibration of the feeding system for a CD-ROM Drive)

  • 박준민;노대성;정진태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.324-329
    • /
    • 1996
  • Vibration characteristics of the feeding system in a CD-ROM drive are identified by a theoretical modeling as well as vibration experiments. For this purpose, we establish a vibration model due to the rigid-body motion and perform the modal testings using the impact hammer and shaker. The analysis and experiments show that the feeding system has three rigid-body vibration modes in the low-frequency region and two of them come from the tilting modes. In order to remove the harmful tilting modes for the tracking servo control, a methodology to find the optimal positions of the dampers is also proposed in this study.

  • PDF

초음파 센서를 이용한 모션 인식 차량 통합 제어 장치의 제작 및 실험 (Fabrication and Experiment of Ultrasonic Sensor Integrated Motion Recognition Device for Vehicle Manipulation)

  • 나영민;박종규;이현석;강태훈
    • 센서학회지
    • /
    • 제24권3호
    • /
    • pp.175-180
    • /
    • 2015
  • Worldwide, studies on intelligent vehicles for the convenience of drivers have been actively conducted as the number of cars has increased. However, vehicle convenience enabled by buttons lowers the concentration on driving and hence poses as a huge threat to the safety of the driver. The use of one of the convenient features, impaired driving auxiliary equipment, is limited because of its complex usage, and this device also hinders the front view of the driver. This paper proposes a vehicle-control device for controlling the convenient features as well as changes in speed and direction using gestures and motions of the driver. This device consists of an ultrasonic sensor for recognizing movement, an arduino for accepting signal control functions and servo and DC motors apply to various vehicle parts. Firstly, the vehicle-control device was designed using a 3D CAD program known as Solid-works based on the size of the steering wheel. Then, through simulations, a suitable length for minimizing the absorbent between ultrasonic sensors was confirmed using a program known as COMSOL Multiphysics. Finally, simulation results were verified through experiments, and the optimal size of the device was identified through the number of errors.

코깅 토크를 포함한 광역 속도 영역상의 BLDCM의 토크 리플 최소화를 위한 기준 프레임 접근기법 (Reference Frame Approach for Torque Ripple Minimization of BLDCM over Wide Speed Range Including Cogging Torque)

  • 박한웅;조성배;원태현;권순재;함병운;김철우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.33-36
    • /
    • 2001
  • Torque ripple control of brush less DC motor has been the main issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise should be minimized. Most methods for suppressing the torque ripples require Fourier series analysis and either the iterative or least mean square minimization. In this paper, the novel approach to achieve the ripple-tree torque control with maximum efficiency based on the d-q-0 reference frame is presented. The proposed method optimize the reference phase current waveforms including even the case of 3 phase unbalanced condition, and the motor winding currents are controlled to follow up the optimized current waveforms by delta modulation technique. As a result, the proposed approach provides a simple and clear way to obtain the optimal motor excitation currents. The validity and practical applications of the proposed control scheme are verified through the simulations and experimental results.

  • PDF

LabVIEW 기반 6축 수직다관절 로봇의 게인스케쥴링 구현 연구 (Gain Scheduling in a 6-Axis Articulated Robot Based on LabVIEW)

  • 김만수;정원지;김성빈
    • 한국생산제조학회지
    • /
    • 제23권3호
    • /
    • pp.318-324
    • /
    • 2014
  • Recent years have witnessed a growing demand for a wide variety of high-performance industrial robots. In this paper, for accurate gain tuning of a 6-axis articulated industrial robot with reduced noise, a program routine for a dynamic signal analyzer (DSA) using the frequency response method will be programmed using $LabVIEW^{(R)}$. Then, robot transfer functions can be obtained experimentally using the frequency response method with the DSA program. Data from the robot transfer functions are transformed into Bode plots, based on which an optimal gain tuning will be executed. Gain tuning can enhance the response quality of the output signal for a given input signal during real-time control of the robot. The effectiveness of our proposed technique will be verified by implementation with a (lab-manufactured) 6-axis articulated industrial robot (hereinafter called "RS2") and comparison with the zero position gain tuning, as well as other positions.

직접토크제어에 의한 위치검출기 없는 릴럭턴스 동기전동기의 위치 제어시스템 (A High-Performance Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control)

  • 김동희;김민회;김남훈;배원식
    • 전력전자학회논문지
    • /
    • 제7권5호
    • /
    • pp.427-436
    • /
    • 2002
  • 본 논문은 직접토크제어(Direct torque control, DTC)를 사용한 릴럭턴스 동기전동기(Reluctance synchronous motor, RSM)의 위치센서 없는 모션제어 시스템을 제안한다. 고성능 효율제어를 수행하는데 있어서 DTC를 이용한 릴럭턴스 전동기 드라이브는 고정자 쇄교자속의 포화와 부하전류에 따라 비선형적으로 변하는 인덕턴스로 인해 여러 가지 문제점들이 발생한다. 이러한 이유로 본 논문에서는 정확한 고정자 쇄교자속과 토크를 계산하기 위해서 자속관측기의 $L_d\;와\; L_q$값을 회전자 위치와 고정자 전류에 대해 보상하였으며, 빠른 토크 응답특성과 최적 효율특성을 얻기 위해서 기준자속을 부하에 따라 계산하였다. 제안된 알고리즘의 정당성을 확인하기 위해서 1.0[kW] 릴럭턴스 동기 전동기를 사용하여 $\pm$20[rpm]과 $\pm$1500[rpm]에서 실험을 수행하였고, 실험을 수행한 결과 저속영역과 고속영역 모두 우수한 동특성과 향상된 효율을 얻을 수 있었다.

H$\infty$ 제어를 이용한 가스 및 석유 탐사용 플랫폼의 동위치 제어 (Dynamic Positioning Control System for Gas & Oil Exploration Platforms Using H$\infty$ Control)

  • 유휘룡;노용우;박대진;구성자;박승수;김상봉
    • 한국가스학회지
    • /
    • 제3권2호
    • /
    • pp.62-69
    • /
    • 1999
  • 본 논문에서는 혼합감도문제를 이용하여 강인한 서보계를 구성함으로서 동위치 제어 시스템의 제어계를 설계하는 방법을 제안하였고, LQG를 이용한 다변수 디지털 서보 제어기 및 H$\infty$ 최적 제어기와의 비교실험을 통하여 제안된 제어기의 유용성을 입증하였다.

  • PDF

Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation

  • Chu, Shih-Yu;Yeh, Shih-Wei;Lu, Lyan-Ywan;Peng, Chih-Hua
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.425-436
    • /
    • 2017
  • Vibration control using a tuned mass damper (TMD) is an effective technique that has been verified using analytical methods and experiments. It has been applied in mechanical, automotive, and structural applications. However, the damping of a TMD cannot be adjusted in real time. An excessive mass damper stroke may be introduced when the mass damper is subjected to a seismic excitation whose frequency content is within its operation range. The semi-active tuned mass damper (SATMD) has been proposed to solve this problem. The parameters of an SATMD can be adjusted in real time based on the measured structural responses and an appropriate control law. In this study, a stiffness-controllable TMD, called a leverage-type stiffness-controllable mass damper (LSCMD), is proposed and fabricated to verify its feasibility. The LSCMD contains a simple leverage mechanism and its stiffness can be altered by adjusting the pivot position. To determine the pivot position of the LSCMD in real time, a discrete-time direct output-feedback active control law that considers delay time is implemented. Moreover, an identification test for the transfer function of the pivot driving and control systems is proposed. The identification results demonstrate the target displacement can be achieved by the pivot displacement in 0-2 Hz range and the control delay time is about 0.1 s. A shaking-table test has been conducted to verify the theory and feasibility of the LSCMD. The comparisons of experimental and theoretical results of the LSCMD system show good consistency. It is shown that dynamic behavior of the LSCMD can be simulated correctly by the theoretical model and that the stiffness can be properly adjusted by the pivot position. Comparisons of experimental results of the LSCMD and passive TMD show the LSCMD with less demand on the mass damper stroke than that for the passive TMD.

A Novel High Precision Electromagnetic Suspension for Long-Stroke Movement and Its Performance Evaluation

  • Lee, Ki-Chang;Moon, Seokhwan;Ha, Hyunuk;Park, Byoung-Gun;Kim, Ji-Won;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.514-522
    • /
    • 2014
  • A new type of high precision electromagnetic suspension (EMS) which can support heavy tray along long stroke rail is proposed in this paper. Compared with the conventional EMS, the suggested moving-core typed EMS has the levitation electromagnets (EMs) on the fixed rail. This scheme has high load capability caused by iron-core and enables simple tray structure. Also it does not have precision degradation caused by heat generation from EMs, which is a drawback of conventional EMS. With these merits, the proposed EMS can be an optimal contactless linear bearing in next generation flat panel display (FPD) manufacturing process if the ability of long stroke movement is proved. So a special Section Switching Algorithm (SSA) is derived from the resultant force and moment equations of the levitated tray which enables long stroke movement of the tray. In order to verify the feasibility of the suggested SSA, a simple test-setup of the EMS with 2 Section-changes is made up and servo-controlled in the simulation and experiment. The simulation shows the perfect changeover the EMs, and the experiment shows overall control performance of under ${\pm}40{\mu}m$ gap deviations. These results reveal that the newly suggested contactless linear bearing can simultaneously achieve high load capability and precision gap control as well as long stroke.

유전 알고리즘을 이용한 유압 위치계의 PID 제어기 동조 (Tuning of PID Controller for Hydraulic Positioning System Using Genetic Algorithm)

  • 김기범;박승민;김인수
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.93-101
    • /
    • 2016
  • This study presents a simple genetic algorithm to systematically design a PID controller for a hydraulic positioning system operated by a proportional solenoid valve. The inverse dead-zone compensator with nonlinear characteristics is used to cancel out the dead-zone phenomenon in the hydraulic system. The object function considering overshoot, settling time, and control input is adopted to search for optimal PID gains. The designed PID controller is compared with the LQG/LTR controller to check the performance of the hydraulic positioning system in the time and frequency domains. The experimental results show that the hydraulic servo system with the proposed PID controller responds effectively to the various types of reference input.